--- trunk/libf/phylmd/cv_routines.f 2008/07/21 16:05:07 12 +++ trunk/libf/phylmd/CV_routines/cv_param.f90 2011/09/23 12:28:01 52 @@ -2,44 +2,44 @@ ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_routines.F,v 1.1.1.1 2004/05/19 12:53:08 lmdzadmin Exp $ ! SUBROUTINE cv_param(nd) + use cvparam implicit none -c------------------------------------------------------------ -c Set parameters for convectL -c (includes microphysical parameters and parameters that -c control the rate of approach to quasi-equilibrium) -c------------------------------------------------------------ +!------------------------------------------------------------ +! Set parameters for convectL +! (includes microphysical parameters and parameters that +! control the rate of approach to quasi-equilibrium) +!------------------------------------------------------------ + +! *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** +! *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** +! *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** +! *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** +! *** BETWEEN 0 C AND TLCRIT) *** +! *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** +! *** FORMULATION *** +! *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** +! *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** +! *** OF CLOUD *** +! *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** +! *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** +! *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** +! *** OF RAIN *** +! *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** +! *** OF SNOW *** +! *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** +! *** TRANSPORT *** +! *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** +! *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** +! *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** +! *** APPROACH TO QUASI-EQUILIBRIUM *** +! *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** +! *** (DAMP MUST BE LESS THAN 1) *** -C *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** -C *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** -C *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** -C *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** -C *** BETWEEN 0 C AND TLCRIT) *** -C *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** -C *** FORMULATION *** -C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** -C *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** -C *** OF CLOUD *** -C *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** -C *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** -C *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** -C *** OF RAIN *** -C *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** -C *** OF SNOW *** -C *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** -C *** TRANSPORT *** -C *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** -C *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** -C *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** -C *** APPROACH TO QUASI-EQUILIBRIUM *** -C *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** -C *** (DAMP MUST BE LESS THAN 1) *** - - include "cvparam.h" integer nd -c noff: integer limit for convection (nd-noff) -c minorig: First level of convection +! noff: integer limit for convection (nd-noff) +! minorig: First level of convection noff = 2 minorig = 2 @@ -58,1695 +58,15 @@ coeffr=1.0 coeffs=0.8 dtmax=0.9 -c +! cu=0.70 -c +! betad=10.0 -c +! damp=0.1 alpha=0.2 -c +! delta=0.01 ! cld -c - return - end - - SUBROUTINE cv_prelim(len,nd,ndp1,t,q,p,ph - : ,lv,cpn,tv,gz,h,hm) - implicit none - -!===================================================================== -! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY -!===================================================================== - -c inputs: - integer len, nd, ndp1 - real t(len,nd), q(len,nd), p(len,nd), ph(len,ndp1) - -c outputs: - real lv(len,nd), cpn(len,nd), tv(len,nd) - real gz(len,nd), h(len,nd), hm(len,nd) - -c local variables: - integer k, i - real cpx(len,nd) - - include "cvthermo.h" - include "cvparam.h" - - - do 110 k=1,nlp - do 100 i=1,len - lv(i,k)= lv0-clmcpv*(t(i,k)-t0) - cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) - cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) - tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) - 100 continue - 110 continue -c -c gz = phi at the full levels (same as p). -c - do 120 i=1,len - gz(i,1)=0.0 - 120 continue - do 140 k=2,nlp - do 130 i=1,len - gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) - & *(p(i,k-1)-p(i,k))/ph(i,k) - 130 continue - 140 continue -c -c h = phi + cpT (dry static energy). -c hm = phi + cp(T-Tbase)+Lq -c - do 170 k=1,nlp - do 160 i=1,len - h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) - hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) - 160 continue - 170 continue - - return - end - - SUBROUTINE cv_feed(len,nd,t,q,qs,p,hm,gz - : ,nk,icb,icbmax,iflag,tnk,qnk,gznk,plcl) - implicit none - -C================================================================ -C Purpose: CONVECTIVE FEED -C================================================================ - - include "cvparam.h" - -c inputs: - integer len, nd - real t(len,nd), q(len,nd), qs(len,nd), p(len,nd) - real hm(len,nd), gz(len,nd) - -c outputs: - integer iflag(len), nk(len), icb(len), icbmax - real tnk(len), qnk(len), gznk(len), plcl(len) - -c local variables: - integer i, k - integer ihmin(len) - real work(len) - real pnk(len), qsnk(len), rh(len), chi(len) - -!------------------------------------------------------------------- -! --- Find level of minimum moist static energy -! --- If level of minimum moist static energy coincides with -! --- or is lower than minimum allowable parcel origin level, -! --- set iflag to 6. -!------------------------------------------------------------------- - - do 180 i=1,len - work(i)=1.0e12 - ihmin(i)=nl - 180 continue - do 200 k=2,nlp - do 190 i=1,len - if((hm(i,k).lt.work(i)).and. - & (hm(i,k).lt.hm(i,k-1)))then - work(i)=hm(i,k) - ihmin(i)=k - endif - 190 continue - 200 continue - do 210 i=1,len - ihmin(i)=min(ihmin(i),nlm) - if(ihmin(i).le.minorig)then - iflag(i)=6 - endif - 210 continue -c -!------------------------------------------------------------------- -! --- Find that model level below the level of minimum moist static -! --- energy that has the maximum value of moist static energy -!------------------------------------------------------------------- - - do 220 i=1,len - work(i)=hm(i,minorig) - nk(i)=minorig - 220 continue - do 240 k=minorig+1,nl - do 230 i=1,len - if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then - work(i)=hm(i,k) - nk(i)=k - endif - 230 continue - 240 continue -!------------------------------------------------------------------- -! --- Check whether parcel level temperature and specific humidity -! --- are reasonable -!------------------------------------------------------------------- - do 250 i=1,len - if(((t(i,nk(i)).lt.250.0).or. - & (q(i,nk(i)).le.0.0).or. - & (p(i,ihmin(i)).lt.400.0)).and. - & (iflag(i).eq.0))iflag(i)=7 - 250 continue -!------------------------------------------------------------------- -! --- Calculate lifted condensation level of air at parcel origin level -! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) -!------------------------------------------------------------------- - do 260 i=1,len - tnk(i)=t(i,nk(i)) - qnk(i)=q(i,nk(i)) - gznk(i)=gz(i,nk(i)) - pnk(i)=p(i,nk(i)) - qsnk(i)=qs(i,nk(i)) -c - rh(i)=qnk(i)/qsnk(i) - rh(i)=min(1.0,rh(i)) - chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) - plcl(i)=pnk(i)*(rh(i)**chi(i)) - if(((plcl(i).lt.200.0).or.(plcl(i).ge.2000.0)) - & .and.(iflag(i).eq.0))iflag(i)=8 - 260 continue -!------------------------------------------------------------------- -! --- Calculate first level above lcl (=icb) -!------------------------------------------------------------------- - do 270 i=1,len - icb(i)=nlm - 270 continue -c - do 290 k=minorig,nl - do 280 i=1,len - if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) - & icb(i)=min(icb(i),k) - 280 continue - 290 continue -c - do 300 i=1,len - if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 - 300 continue -c -c Compute icbmax. -c - icbmax=2 - do 310 i=1,len - icbmax=max(icbmax,icb(i)) - 310 continue - - return - end - - SUBROUTINE cv_undilute1(len,nd,t,q,qs,gz,p,nk,icb,icbmax - : ,tp,tvp,clw) - implicit none - - include "cvthermo.h" - include "cvparam.h" - -c inputs: - integer len, nd - integer nk(len), icb(len), icbmax - real t(len,nd), q(len,nd), qs(len,nd), gz(len,nd) - real p(len,nd) - -c outputs: - real tp(len,nd), tvp(len,nd), clw(len,nd) - -c local variables: - integer i, k - real tg, qg, alv, s, ahg, tc, denom, es, rg - real ah0(len), cpp(len) - real tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) - -!------------------------------------------------------------------- -! --- Calculates the lifted parcel virtual temperature at nk, -! --- the actual temperature, and the adiabatic -! --- liquid water content. The procedure is to solve the equation. -! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. -!------------------------------------------------------------------- - - do 320 i=1,len - tnk(i)=t(i,nk(i)) - qnk(i)=q(i,nk(i)) - gznk(i)=gz(i,nk(i)) - ticb(i)=t(i,icb(i)) - gzicb(i)=gz(i,icb(i)) - 320 continue -c -c *** Calculate certain parcel quantities, including static energy *** -c - do 330 i=1,len - ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) - & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) - cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv - 330 continue -c -c *** Calculate lifted parcel quantities below cloud base *** -c - do 350 k=minorig,icbmax-1 - do 340 i=1,len - tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))/cpp(i) - tvp(i,k)=tp(i,k)*(1.+qnk(i)*epsi) - 340 continue - 350 continue -c -c *** Find lifted parcel quantities above cloud base *** -c - do 360 i=1,len - tg=ticb(i) - qg=qs(i,icb(i)) - alv=lv0-clmcpv*(ticb(i)-t0) -c -c First iteration. -c - s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) - s=1./s - ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) - tg=tg+s*(ah0(i)-ahg) - tg=max(tg,35.0) - tc=tg-t0 - denom=243.5+tc - if(tc.ge.0.0)then - es=6.112*exp(17.67*tc/denom) - else - es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) - endif - qg=eps*es/(p(i,icb(i))-es*(1.-eps)) -c -c Second iteration. -c - s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) - s=1./s - ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) - tg=tg+s*(ah0(i)-ahg) - tg=max(tg,35.0) - tc=tg-t0 - denom=243.5+tc - if(tc.ge.0.0)then - es=6.112*exp(17.67*tc/denom) - else - es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) - end if - qg=eps*es/(p(i,icb(i))-es*(1.-eps)) -c - alv=lv0-clmcpv*(ticb(i)-273.15) - tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) - & -gz(i,icb(i))-alv*qg)/cpd - clw(i,icb(i))=qnk(i)-qg - clw(i,icb(i))=max(0.0,clw(i,icb(i))) - rg=qg/(1.-qnk(i)) - tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) - 360 continue -c - do 380 k=minorig,icbmax - do 370 i=1,len - tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) - 370 continue - 380 continue -c - return - end - - SUBROUTINE cv_trigger(len,nd,icb,cbmf,tv,tvp,iflag) - implicit none - -!------------------------------------------------------------------- -! --- Test for instability. -! --- If there was no convection at last time step and parcel -! --- is stable at icb, then set iflag to 4. -!------------------------------------------------------------------- - - include "cvparam.h" - -c inputs: - integer len, nd, icb(len) - real cbmf(len), tv(len,nd), tvp(len,nd) - -c outputs: - integer iflag(len) ! also an input - -c local variables: - integer i - - - do 390 i=1,len - if((cbmf(i).eq.0.0) .and.(iflag(i).eq.0).and. - & (tvp(i,icb(i)).le.(tv(i,icb(i))-dtmax)))iflag(i)=4 - 390 continue - - return - end - - SUBROUTINE cv_compress( len,nloc,ncum,nd - : ,iflag1,nk1,icb1 - : ,cbmf1,plcl1,tnk1,qnk1,gznk1 - : ,t1,q1,qs1,u1,v1,gz1 - : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 - o ,iflag,nk,icb - o ,cbmf,plcl,tnk,qnk,gznk - o ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw - o ,dph ) - implicit none - - include "cvparam.h" - -c inputs: - integer len,ncum,nd,nloc - integer iflag1(len),nk1(len),icb1(len) - real cbmf1(len),plcl1(len),tnk1(len),qnk1(len),gznk1(len) - real t1(len,nd),q1(len,nd),qs1(len,nd),u1(len,nd),v1(len,nd) - real gz1(len,nd),h1(len,nd),lv1(len,nd),cpn1(len,nd) - real p1(len,nd),ph1(len,nd+1),tv1(len,nd),tp1(len,nd) - real tvp1(len,nd),clw1(len,nd) - -c outputs: - integer iflag(nloc),nk(nloc),icb(nloc) - real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) - real t(nloc,nd),q(nloc,nd),qs(nloc,nd),u(nloc,nd),v(nloc,nd) - real gz(nloc,nd),h(nloc,nd),lv(nloc,nd),cpn(nloc,nd) - real p(nloc,nd),ph(nloc,nd+1),tv(nloc,nd),tp(nloc,nd) - real tvp(nloc,nd),clw(nloc,nd) - real dph(nloc,nd) - -c local variables: - integer i,k,nn - - - do 110 k=1,nl+1 - nn=0 - do 100 i=1,len - if(iflag1(i).eq.0)then - nn=nn+1 - t(nn,k)=t1(i,k) - q(nn,k)=q1(i,k) - qs(nn,k)=qs1(i,k) - u(nn,k)=u1(i,k) - v(nn,k)=v1(i,k) - gz(nn,k)=gz1(i,k) - h(nn,k)=h1(i,k) - lv(nn,k)=lv1(i,k) - cpn(nn,k)=cpn1(i,k) - p(nn,k)=p1(i,k) - ph(nn,k)=ph1(i,k) - tv(nn,k)=tv1(i,k) - tp(nn,k)=tp1(i,k) - tvp(nn,k)=tvp1(i,k) - clw(nn,k)=clw1(i,k) - endif - 100 continue - 110 continue - - if (nn.ne.ncum) then - print*,'strange! nn not equal to ncum: ',nn,ncum - stop - endif - - nn=0 - do 150 i=1,len - if(iflag1(i).eq.0)then - nn=nn+1 - cbmf(nn)=cbmf1(i) - plcl(nn)=plcl1(i) - tnk(nn)=tnk1(i) - qnk(nn)=qnk1(i) - gznk(nn)=gznk1(i) - nk(nn)=nk1(i) - icb(nn)=icb1(i) - iflag(nn)=iflag1(i) - endif - 150 continue - - do 170 k=1,nl - do 160 i=1,ncum - dph(i,k)=ph(i,k)-ph(i,k+1) - 160 continue - 170 continue - +! return end - - SUBROUTINE cv_undilute2(nloc,ncum,nd,icb,nk - : ,tnk,qnk,gznk,t,q,qs,gz - : ,p,dph,h,tv,lv - o ,inb,inb1,tp,tvp,clw,hp,ep,sigp,frac) - implicit none - -C--------------------------------------------------------------------- -C Purpose: -C FIND THE REST OF THE LIFTED PARCEL TEMPERATURES -C & -C COMPUTE THE PRECIPITATION EFFICIENCIES AND THE -C FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD -C & -C FIND THE LEVEL OF NEUTRAL BUOYANCY -C--------------------------------------------------------------------- - - include "cvthermo.h" - include "cvparam.h" - -c inputs: - integer ncum, nd, nloc - integer icb(nloc), nk(nloc) - real t(nloc,nd), q(nloc,nd), qs(nloc,nd), gz(nloc,nd) - real p(nloc,nd), dph(nloc,nd) - real tnk(nloc), qnk(nloc), gznk(nloc) - real lv(nloc,nd), tv(nloc,nd), h(nloc,nd) - -c outputs: - integer inb(nloc), inb1(nloc) - real tp(nloc,nd), tvp(nloc,nd), clw(nloc,nd) - real ep(nloc,nd), sigp(nloc,nd), hp(nloc,nd) - real frac(nloc) - -c local variables: - integer i, k - real tg,qg,ahg,alv,s,tc,es,denom,rg,tca,elacrit - real by, defrac - real ah0(nloc), cape(nloc), capem(nloc), byp(nloc) - logical lcape(nloc) - -!===================================================================== -! --- SOME INITIALIZATIONS -!===================================================================== - - do 170 k=1,nl - do 160 i=1,ncum - ep(i,k)=0.0 - sigp(i,k)=sigs - 160 continue - 170 continue - -!===================================================================== -! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES -!===================================================================== -c -c --- The procedure is to solve the equation. -c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. -c -c *** Calculate certain parcel quantities, including static energy *** -c -c - do 240 i=1,ncum - ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) - & +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) - 240 continue -c -c -c *** Find lifted parcel quantities above cloud base *** -c -c - do 300 k=minorig+1,nl - do 290 i=1,ncum - if(k.ge.(icb(i)+1))then - tg=t(i,k) - qg=qs(i,k) - alv=lv0-clmcpv*(t(i,k)-t0) -c -c First iteration. -c - s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) - s=1./s - ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) - tg=tg+s*(ah0(i)-ahg) - tg=max(tg,35.0) - tc=tg-t0 - denom=243.5+tc - if(tc.ge.0.0)then - es=6.112*exp(17.67*tc/denom) - else - es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) - endif - qg=eps*es/(p(i,k)-es*(1.-eps)) -c -c Second iteration. -c - s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) - s=1./s - ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) - tg=tg+s*(ah0(i)-ahg) - tg=max(tg,35.0) - tc=tg-t0 - denom=243.5+tc - if(tc.ge.0.0)then - es=6.112*exp(17.67*tc/denom) - else - es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) - endif - qg=eps*es/(p(i,k)-es*(1.-eps)) -c - alv=lv0-clmcpv*(t(i,k)-t0) -c print*,'cpd dans convect2 ',cpd -c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' -c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd - tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd -c if (.not.cpd.gt.1000.) then -c print*,'CPD=',cpd -c stop -c endif - clw(i,k)=qnk(i)-qg - clw(i,k)=max(0.0,clw(i,k)) - rg=qg/(1.-qnk(i)) - tvp(i,k)=tp(i,k)*(1.+rg*epsi) - endif - 290 continue - 300 continue -c -!===================================================================== -! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF -! --- PRECIPITATION FALLING OUTSIDE OF CLOUD -! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) -!===================================================================== -c - do 320 k=minorig+1,nl - do 310 i=1,ncum - if(k.ge.(nk(i)+1))then - tca=tp(i,k)-t0 - if(tca.ge.0.0)then - elacrit=elcrit - else - elacrit=elcrit*(1.0-tca/tlcrit) - endif - elacrit=max(elacrit,0.0) - ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) - ep(i,k)=max(ep(i,k),0.0 ) - ep(i,k)=min(ep(i,k),1.0 ) - sigp(i,k)=sigs - endif - 310 continue - 320 continue -c -!===================================================================== -! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL -! --- VIRTUAL TEMPERATURE -!===================================================================== -c - do 340 k=minorig+1,nl - do 330 i=1,ncum - if(k.ge.(icb(i)+1))then - tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) -c print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' -c print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) - endif - 330 continue - 340 continue - do 350 i=1,ncum - tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd - 350 continue -c -c===================================================================== -c --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S -c --- HIGHEST LEVEL OF NEUTRAL BUOYANCY -c --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) -c===================================================================== -c - do 510 i=1,ncum - cape(i)=0.0 - capem(i)=0.0 - inb(i)=icb(i)+1 - inb1(i)=inb(i) - 510 continue -c -c Originial Code -c -c do 530 k=minorig+1,nl-1 -c do 520 i=1,ncum -c if(k.ge.(icb(i)+1))then -c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) -c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) -c cape(i)=cape(i)+by -c if(by.ge.0.0)inb1(i)=k+1 -c if(cape(i).gt.0.0)then -c inb(i)=k+1 -c capem(i)=cape(i) -c endif -c endif -c520 continue -c530 continue -c do 540 i=1,ncum -c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) -c cape(i)=capem(i)+byp -c defrac=capem(i)-cape(i) -c defrac=max(defrac,0.001) -c frac(i)=-cape(i)/defrac -c frac(i)=min(frac(i),1.0) -c frac(i)=max(frac(i),0.0) -c540 continue -c -c K Emanuel fix -c -c call zilch(byp,ncum) -c do 530 k=minorig+1,nl-1 -c do 520 i=1,ncum -c if(k.ge.(icb(i)+1))then -c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) -c cape(i)=cape(i)+by -c if(by.ge.0.0)inb1(i)=k+1 -c if(cape(i).gt.0.0)then -c inb(i)=k+1 -c capem(i)=cape(i) -c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) -c endif -c endif -c520 continue -c530 continue -c do 540 i=1,ncum -c inb(i)=max(inb(i),inb1(i)) -c cape(i)=capem(i)+byp(i) -c defrac=capem(i)-cape(i) -c defrac=max(defrac,0.001) -c frac(i)=-cape(i)/defrac -c frac(i)=min(frac(i),1.0) -c frac(i)=max(frac(i),0.0) -c540 continue -c -c J Teixeira fix -c - call zilch(byp,ncum) - do 515 i=1,ncum - lcape(i)=.true. - 515 continue - do 530 k=minorig+1,nl-1 - do 520 i=1,ncum - if(cape(i).lt.0.0)lcape(i)=.false. - if((k.ge.(icb(i)+1)).and.lcape(i))then - by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) - byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) - cape(i)=cape(i)+by - if(by.ge.0.0)inb1(i)=k+1 - if(cape(i).gt.0.0)then - inb(i)=k+1 - capem(i)=cape(i) - endif - endif - 520 continue - 530 continue - do 540 i=1,ncum - cape(i)=capem(i)+byp(i) - defrac=capem(i)-cape(i) - defrac=max(defrac,0.001) - frac(i)=-cape(i)/defrac - frac(i)=min(frac(i),1.0) - frac(i)=max(frac(i),0.0) - 540 continue -c -c===================================================================== -c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL -c===================================================================== -c -c initialization: - do i=1,ncum*nlp - hp(i,1)=h(i,1) - enddo - - do 600 k=minorig+1,nl - do 590 i=1,ncum - if((k.ge.icb(i)).and.(k.le.inb(i)))then - hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) - endif - 590 continue - 600 continue -c - return - end -c - SUBROUTINE cv_closure(nloc,ncum,nd,nk,icb - : ,tv,tvp,p,ph,dph,plcl,cpn - : ,iflag,cbmf) - implicit none - -c inputs: - integer ncum, nd, nloc - integer nk(nloc), icb(nloc) - real tv(nloc,nd), tvp(nloc,nd), p(nloc,nd), dph(nloc,nd) - real ph(nloc,nd+1) ! caution nd instead ndp1 to be consistent... - real plcl(nloc), cpn(nloc,nd) - -c outputs: - integer iflag(nloc) - real cbmf(nloc) ! also an input - -c local variables: - integer i, k, icbmax - real dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) - real work(nloc) - - include "cvthermo.h" - include "cvparam.h" - -c------------------------------------------------------------------- -c Compute icbmax. -c------------------------------------------------------------------- - - icbmax=2 - do 230 i=1,ncum - icbmax=max(icbmax,icb(i)) - 230 continue - -c===================================================================== -c --- CALCULATE CLOUD BASE MASS FLUX -c===================================================================== -c -c tvpplcl = parcel temperature lifted adiabatically from level -c icb-1 to the LCL. -c tvaplcl = virtual temperature at the LCL. -c - do 610 i=1,ncum - dtpbl(i)=0.0 - tvpplcl(i)=tvp(i,icb(i)-1) - & -rrd*tvp(i,icb(i)-1)*(p(i,icb(i)-1)-plcl(i)) - & /(cpn(i,icb(i)-1)*p(i,icb(i)-1)) - tvaplcl(i)=tv(i,icb(i)) - & +(tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i,icb(i))) - & /(p(i,icb(i))-p(i,icb(i)+1)) - 610 continue - -c------------------------------------------------------------------- -c --- Interpolate difference between lifted parcel and -c --- environmental temperatures to lifted condensation level -c------------------------------------------------------------------- -c -c dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). -c - do 630 k=minorig,icbmax - do 620 i=1,ncum - if((k.ge.nk(i)).and.(k.le.(icb(i)-1)))then - dtpbl(i)=dtpbl(i)+(tvp(i,k)-tv(i,k))*dph(i,k) - endif - 620 continue - 630 continue - do 640 i=1,ncum - dtpbl(i)=dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) - dtmin(i)=tvpplcl(i)-tvaplcl(i)+dtmax+dtpbl(i) - 640 continue -c -c------------------------------------------------------------------- -c --- Adjust cloud base mass flux -c------------------------------------------------------------------- -c - do 650 i=1,ncum - work(i)=cbmf(i) - cbmf(i)=max(0.0,(1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) - if((work(i).eq.0.0).and.(cbmf(i).eq.0.0))then - iflag(i)=3 - endif - 650 continue - - return - end - - SUBROUTINE cv_mixing(nloc,ncum,nd,icb,nk,inb,inb1 - : ,ph,t,q,qs,u,v,h,lv,qnk - : ,hp,tv,tvp,ep,clw,cbmf - : ,m,ment,qent,uent,vent,nent,sij,elij) - implicit none - - include "cvthermo.h" - include "cvparam.h" - -c inputs: - integer ncum, nd, nloc - integer icb(nloc), inb(nloc), inb1(nloc), nk(nloc) - real cbmf(nloc), qnk(nloc) - real ph(nloc,nd+1) - real t(nloc,nd), q(nloc,nd), qs(nloc,nd), lv(nloc,nd) - real u(nloc,nd), v(nloc,nd), h(nloc,nd), hp(nloc,nd) - real tv(nloc,nd), tvp(nloc,nd), ep(nloc,nd), clw(nloc,nd) - -c outputs: - integer nent(nloc,nd) - real m(nloc,nd), ment(nloc,nd,nd), qent(nloc,nd,nd) - real uent(nloc,nd,nd), vent(nloc,nd,nd) - real sij(nloc,nd,nd), elij(nloc,nd,nd) - -c local variables: - integer i, j, k, ij - integer num1, num2 - real dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp - real alt, qp1, smid, sjmin, sjmax, delp, delm - real work(nloc), asij(nloc), smin(nloc), scrit(nloc) - real bsum(nloc,nd) - logical lwork(nloc) - -c===================================================================== -c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS -c===================================================================== -c - do 360 i=1,ncum*nlp - nent(i,1)=0 - m(i,1)=0.0 - 360 continue -c - do 400 k=1,nlp - do 390 j=1,nlp - do 385 i=1,ncum - qent(i,k,j)=q(i,j) - uent(i,k,j)=u(i,j) - vent(i,k,j)=v(i,j) - elij(i,k,j)=0.0 - ment(i,k,j)=0.0 - sij(i,k,j)=0.0 - 385 continue - 390 continue - 400 continue -c -c------------------------------------------------------------------- -c --- Calculate rates of mixing, m(i) -c------------------------------------------------------------------- -c - call zilch(work,ncum) -c - do 670 j=minorig+1,nl - do 660 i=1,ncum - if((j.ge.(icb(i)+1)).and.(j.le.inb(i)))then - k=min(j,inb1(i)) - dbo=abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) - & +entp*0.04*(ph(i,k)-ph(i,k+1)) - work(i)=work(i)+dbo - m(i,j)=cbmf(i)*dbo - endif - 660 continue - 670 continue - do 690 k=minorig+1,nl - do 680 i=1,ncum - if((k.ge.(icb(i)+1)).and.(k.le.inb(i)))then - m(i,k)=m(i,k)/work(i) - endif - 680 continue - 690 continue -c -c -c===================================================================== -c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING -c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING -c --- FRACTION (sij) -c===================================================================== -c -c - do 750 i=minorig+1,nl - do 710 j=minorig+1,nl - do 700 ij=1,ncum - if((i.ge.(icb(ij)+1)).and.(j.ge.icb(ij)) - & .and.(i.le.inb(ij)).and.(j.le.inb(ij)))then - qti=qnk(ij)-ep(ij,i)*clw(ij,i) - bf2=1.+lv(ij,j)*lv(ij,j)*qs(ij,j) - & /(rrv*t(ij,j)*t(ij,j)*cpd) - anum=h(ij,j)-hp(ij,i)+(cpv-cpd)*t(ij,j)*(qti-q(ij,j)) - denom=h(ij,i)-hp(ij,i)+(cpd-cpv)*(q(ij,i)-qti)*t(ij,j) - dei=denom - if(abs(dei).lt.0.01)dei=0.01 - sij(ij,i,j)=anum/dei - sij(ij,i,i)=1.0 - altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) - altem=altem/bf2 - cwat=clw(ij,j)*(1.-ep(ij,j)) - stemp=sij(ij,i,j) - if((stemp.lt.0.0.or.stemp.gt.1.0.or. - 1 altem.gt.cwat).and.j.gt.i)then - anum=anum-lv(ij,j)*(qti-qs(ij,j)-cwat*bf2) - denom=denom+lv(ij,j)*(q(ij,i)-qti) - if(abs(denom).lt.0.01)denom=0.01 - sij(ij,i,j)=anum/denom - altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) - altem=altem-(bf2-1.)*cwat - endif - if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then - qent(ij,i,j)=sij(ij,i,j)*q(ij,i) - & +(1.-sij(ij,i,j))*qti - uent(ij,i,j)=sij(ij,i,j)*u(ij,i) - & +(1.-sij(ij,i,j))*u(ij,nk(ij)) - vent(ij,i,j)=sij(ij,i,j)*v(ij,i) - & +(1.-sij(ij,i,j))*v(ij,nk(ij)) - elij(ij,i,j)=altem - elij(ij,i,j)=max(0.0,elij(ij,i,j)) - ment(ij,i,j)=m(ij,i)/(1.-sij(ij,i,j)) - nent(ij,i)=nent(ij,i)+1 - endif - sij(ij,i,j)=max(0.0,sij(ij,i,j)) - sij(ij,i,j)=min(1.0,sij(ij,i,j)) - endif - 700 continue - 710 continue -c -c *** If no air can entrain at level i assume that updraft detrains *** -c *** at that level and calculate detrained air flux and properties *** -c - do 740 ij=1,ncum - if((i.ge.(icb(ij)+1)).and.(i.le.inb(ij)) - & .and.(nent(ij,i).eq.0))then - ment(ij,i,i)=m(ij,i) - qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) - uent(ij,i,i)=u(ij,nk(ij)) - vent(ij,i,i)=v(ij,nk(ij)) - elij(ij,i,i)=clw(ij,i) - sij(ij,i,i)=1.0 - endif - 740 continue - 750 continue -c - do 770 i=1,ncum - sij(i,inb(i),inb(i))=1.0 - 770 continue -c -c===================================================================== -c --- NORMALIZE ENTRAINED AIR MASS FLUXES -c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING -c===================================================================== -c - call zilch(bsum,ncum*nlp) - do 780 ij=1,ncum - lwork(ij)=.false. - 780 continue - do 789 i=minorig+1,nl -c - num1=0 - do 779 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))num1=num1+1 - 779 continue - if(num1.le.0)go to 789 -c - do 781 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))then - lwork(ij)=(nent(ij,i).ne.0) - qp1=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) - anum=h(ij,i)-hp(ij,i)-lv(ij,i)*(qp1-qs(ij,i)) - denom=h(ij,i)-hp(ij,i)+lv(ij,i)*(q(ij,i)-qp1) - if(abs(denom).lt.0.01)denom=0.01 - scrit(ij)=anum/denom - alt=qp1-qs(ij,i)+scrit(ij)*(q(ij,i)-qp1) - if(scrit(ij).lt.0.0.or.alt.lt.0.0)scrit(ij)=1.0 - asij(ij)=0.0 - smin(ij)=1.0 - endif - 781 continue - do 783 j=minorig,nl -c - num2=0 - do 778 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) - & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) - & .and.lwork(ij))num2=num2+1 - 778 continue - if(num2.le.0)go to 783 -c - do 782 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) - & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)).and.lwork(ij))then - if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then - if(j.gt.i)then - smid=min(sij(ij,i,j),scrit(ij)) - sjmax=smid - sjmin=smid - if(smid.lt.smin(ij) - & .and.sij(ij,i,j+1).lt.smid)then - smin(ij)=smid - sjmax=min(sij(ij,i,j+1),sij(ij,i,j),scrit(ij)) - sjmin=max(sij(ij,i,j-1),sij(ij,i,j)) - sjmin=min(sjmin,scrit(ij)) - endif - else - sjmax=max(sij(ij,i,j+1),scrit(ij)) - smid=max(sij(ij,i,j),scrit(ij)) - sjmin=0.0 - if(j.gt.1)sjmin=sij(ij,i,j-1) - sjmin=max(sjmin,scrit(ij)) - endif - delp=abs(sjmax-smid) - delm=abs(sjmin-smid) - asij(ij)=asij(ij)+(delp+delm) - & *(ph(ij,j)-ph(ij,j+1)) - ment(ij,i,j)=ment(ij,i,j)*(delp+delm) - & *(ph(ij,j)-ph(ij,j+1)) - endif - endif - 782 continue - 783 continue - do 784 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)).and.lwork(ij))then - asij(ij)=max(1.0e-21,asij(ij)) - asij(ij)=1.0/asij(ij) - bsum(ij,i)=0.0 - endif - 784 continue - do 786 j=minorig,nl+1 - do 785 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) - & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) - & .and.lwork(ij))then - ment(ij,i,j)=ment(ij,i,j)*asij(ij) - bsum(ij,i)=bsum(ij,i)+ment(ij,i,j) - endif - 785 continue - 786 continue - do 787 ij=1,ncum - if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) - & .and.(bsum(ij,i).lt.1.0e-18).and.lwork(ij))then - nent(ij,i)=0 - ment(ij,i,i)=m(ij,i) - qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) - uent(ij,i,i)=u(ij,nk(ij)) - vent(ij,i,i)=v(ij,nk(ij)) - elij(ij,i,i)=clw(ij,i) - sij(ij,i,i)=1.0 - endif - 787 continue - 789 continue -c - return - end - - SUBROUTINE cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph - : ,h,lv,ep,sigp,clw,m,ment,elij - : ,iflag,mp,qp,up,vp,wt,water,evap) - implicit none - - - include "cvthermo.h" - include "cvparam.h" - -c inputs: - integer ncum, nd, nloc - integer inb(nloc) - real t(nloc,nd), q(nloc,nd), qs(nloc,nd) - real gz(nloc,nd), u(nloc,nd), v(nloc,nd) - real p(nloc,nd), ph(nloc,nd+1), h(nloc,nd) - real lv(nloc,nd), ep(nloc,nd), sigp(nloc,nd), clw(nloc,nd) - real m(nloc,nd), ment(nloc,nd,nd), elij(nloc,nd,nd) - -c outputs: - integer iflag(nloc) ! also an input - real mp(nloc,nd), qp(nloc,nd), up(nloc,nd), vp(nloc,nd) - real water(nloc,nd), evap(nloc,nd), wt(nloc,nd) - -c local variables: - integer i,j,k,ij,num1 - integer jtt(nloc) - real awat, coeff, qsm, afac, sigt, b6, c6, revap - real dhdp, fac, qstm, rat - real wdtrain(nloc) - logical lwork(nloc) - -c===================================================================== -c --- PRECIPITATING DOWNDRAFT CALCULATION -c===================================================================== -c -c Initializations: -c - do i = 1, ncum - do k = 1, nl+1 - wt(i,k) = omtsnow - mp(i,k) = 0.0 - evap(i,k) = 0.0 - water(i,k) = 0.0 - enddo - enddo - - do 420 i=1,ncum - qp(i,1)=q(i,1) - up(i,1)=u(i,1) - vp(i,1)=v(i,1) - 420 continue - - do 440 k=2,nl+1 - do 430 i=1,ncum - qp(i,k)=q(i,k-1) - up(i,k)=u(i,k-1) - vp(i,k)=v(i,k-1) - 430 continue - 440 continue - - -c *** Check whether ep(inb)=0, if so, skip precipitating *** -c *** downdraft calculation *** -c -c -c *** Integrate liquid water equation to find condensed water *** -c *** and condensed water flux *** -c -c - do 890 i=1,ncum - jtt(i)=2 - if(ep(i,inb(i)).le.0.0001)iflag(i)=2 - if(iflag(i).eq.0)then - lwork(i)=.true. - else - lwork(i)=.false. - endif - 890 continue -c -c *** Begin downdraft loop *** -c -c - call zilch(wdtrain,ncum) - do 899 i=nl+1,1,-1 -c - num1=0 - do 879 ij=1,ncum - if((i.le.inb(ij)).and.lwork(ij))num1=num1+1 - 879 continue - if(num1.le.0)go to 899 -c -c -c *** Calculate detrained precipitation *** -c - do 891 ij=1,ncum - if((i.le.inb(ij)).and.(lwork(ij)))then - wdtrain(ij)=g*ep(ij,i)*m(ij,i)*clw(ij,i) - endif - 891 continue -c - if(i.gt.1)then - do 893 j=1,i-1 - do 892 ij=1,ncum - if((i.le.inb(ij)).and.(lwork(ij)))then - awat=elij(ij,j,i)-(1.-ep(ij,i))*clw(ij,i) - awat=max(0.0,awat) - wdtrain(ij)=wdtrain(ij)+g*awat*ment(ij,j,i) - endif - 892 continue - 893 continue - endif -c -c *** Find rain water and evaporation using provisional *** -c *** estimates of qp(i)and qp(i-1) *** -c -c -c *** Value of terminal velocity and coeffecient of evaporation for snow *** -c - do 894 ij=1,ncum - if((i.le.inb(ij)).and.(lwork(ij)))then - coeff=coeffs - wt(ij,i)=omtsnow -c -c *** Value of terminal velocity and coeffecient of evaporation for rain *** -c - if(t(ij,i).gt.273.0)then - coeff=coeffr - wt(ij,i)=omtrain - endif - qsm=0.5*(q(ij,i)+qp(ij,i+1)) - afac=coeff*ph(ij,i)*(qs(ij,i)-qsm) - & /(1.0e4+2.0e3*ph(ij,i)*qs(ij,i)) - afac=max(afac,0.0) - sigt=sigp(ij,i) - sigt=max(0.0,sigt) - sigt=min(1.0,sigt) - b6=100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij,i) - c6=(water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij,i) - revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) - evap(ij,i)=sigt*afac*revap - water(ij,i)=revap*revap -c -c *** Calculate precipitating downdraft mass flux under *** -c *** hydrostatic approximation *** -c - if(i.gt.1)then - dhdp=(h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) - dhdp=max(dhdp,10.0) - mp(ij,i)=100.*ginv*lv(ij,i)*sigd*evap(ij,i)/dhdp - mp(ij,i)=max(mp(ij,i),0.0) -c -c *** Add small amount of inertia to downdraft *** -c - fac=20.0/(ph(ij,i-1)-ph(ij,i)) - mp(ij,i)=(fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) -c -c *** Force mp to decrease linearly to zero *** -c *** between about 950 mb and the surface *** -c - if(p(ij,i).gt.(0.949*p(ij,1)))then - jtt(ij)=max(jtt(ij),i) - mp(ij,i)=mp(ij,jtt(ij))*(p(ij,1)-p(ij,i)) - & /(p(ij,1)-p(ij,jtt(ij))) - endif - endif -c -c *** Find mixing ratio of precipitating downdraft *** -c - if(i.ne.inb(ij))then - if(i.eq.1)then - qstm=qs(ij,1) - else - qstm=qs(ij,i-1) - endif - if(mp(ij,i).gt.mp(ij,i+1))then - rat=mp(ij,i+1)/mp(ij,i) - qp(ij,i)=qp(ij,i+1)*rat+q(ij,i)*(1.0-rat)+100.*ginv* - & sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) - up(ij,i)=up(ij,i+1)*rat+u(ij,i)*(1.-rat) - vp(ij,i)=vp(ij,i+1)*rat+v(ij,i)*(1.-rat) - else - if(mp(ij,i+1).gt.0.0)then - qp(ij,i)=(gz(ij,i+1)-gz(ij,i) - & +qp(ij,i+1)*(lv(ij,i+1)+t(ij,i+1) - & *(cl-cpd))+cpd*(t(ij,i+1)-t(ij,i))) - & /(lv(ij,i)+t(ij,i)*(cl-cpd)) - up(ij,i)=up(ij,i+1) - vp(ij,i)=vp(ij,i+1) - endif - endif - qp(ij,i)=min(qp(ij,i),qstm) - qp(ij,i)=max(qp(ij,i),0.0) - endif - endif - 894 continue - 899 continue -c - return - end - - SUBROUTINE cv_yield(nloc,ncum,nd,nk,icb,inb,delt - : ,t,q,u,v,gz,p,ph,h,hp,lv,cpn - : ,ep,clw,frac,m,mp,qp,up,vp - : ,wt,water,evap - : ,ment,qent,uent,vent,nent,elij - : ,tv,tvp - o ,iflag,wd,qprime,tprime - o ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc) - implicit none - - include "cvthermo.h" - include "cvparam.h" - -c inputs - integer ncum, nd, nloc - integer nk(nloc), icb(nloc), inb(nloc) - integer nent(nloc,nd) - real, intent(in):: delt - real t(nloc,nd), q(nloc,nd), u(nloc,nd), v(nloc,nd) - real gz(nloc,nd) - real p(nloc,nd), ph(nloc,nd+1), h(nloc,nd) - real hp(nloc,nd), lv(nloc,nd) - real cpn(nloc,nd), ep(nloc,nd), clw(nloc,nd), frac(nloc) - real m(nloc,nd), mp(nloc,nd), qp(nloc,nd) - real up(nloc,nd), vp(nloc,nd) - real wt(nloc,nd), water(nloc,nd), evap(nloc,nd) - real ment(nloc,nd,nd), qent(nloc,nd,nd), elij(nloc,nd,nd) - real uent(nloc,nd,nd), vent(nloc,nd,nd) - real tv(nloc,nd), tvp(nloc,nd) - -c outputs - integer iflag(nloc) ! also an input - real cbmf(nloc) ! also an input - real wd(nloc), tprime(nloc), qprime(nloc) - real precip(nloc) - real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) - real Ma(nloc,nd) - real qcondc(nloc,nd) - -c local variables - integer i,j,ij,k,num1 - real dpinv,cpinv,awat,fqold,ftold,fuold,fvold,delti - real work(nloc), am(nloc),amp1(nloc),ad(nloc) - real ents(nloc), uav(nloc),vav(nloc),lvcp(nloc,nd) - real qcond(nloc,nd), nqcond(nloc,nd), wa(nloc,nd) ! cld - real siga(nloc,nd), ax(nloc,nd), mac(nloc,nd) ! cld - - -c -- initializations: - - delti = 1.0/delt - - do 160 i=1,ncum - precip(i)=0.0 - wd(i)=0.0 - tprime(i)=0.0 - qprime(i)=0.0 - do 170 k=1,nl+1 - ft(i,k)=0.0 - fu(i,k)=0.0 - fv(i,k)=0.0 - fq(i,k)=0.0 - lvcp(i,k)=lv(i,k)/cpn(i,k) - qcondc(i,k)=0.0 ! cld - qcond(i,k)=0.0 ! cld - nqcond(i,k)=0.0 ! cld - 170 continue - 160 continue - -c -c *** Calculate surface precipitation in mm/day *** -c - do 1190 i=1,ncum - if(iflag(i).le.1)then - precip(i) = wt(i,1)*sigd*water(i,1)*86400/g - endif - 1190 continue -c -c -c *** Calculate downdraft velocity scale and surface temperature and *** -c *** water vapor fluctuations *** -c - do i=1,ncum - wd(i)=betad*abs(mp(i,icb(i)))*0.01*rrd*t(i,icb(i)) - : /(sigd*p(i,icb(i))) - qprime(i)=0.5*(qp(i,1)-q(i,1)) - tprime(i)=lv0*qprime(i)/cpd - enddo -c -c *** Calculate tendencies of lowest level potential temperature *** -c *** and mixing ratio *** -c - do 1200 i=1,ncum - work(i)=0.01/(ph(i,1)-ph(i,2)) - am(i)=0.0 - 1200 continue - do 1220 k=2,nl - do 1210 i=1,ncum - if((nk(i).eq.1).and.(k.le.inb(i)).and.(nk(i).eq.1))then - am(i)=am(i)+m(i,k) - endif - 1210 continue - 1220 continue - do 1240 i=1,ncum - if((g*work(i)*am(i)).ge.delti)iflag(i)=1 - ft(i,1)=ft(i,1)+g*work(i)*am(i)*(t(i,2)-t(i,1) - & +(gz(i,2)-gz(i,1))/cpn(i,1)) - ft(i,1)=ft(i,1)-lvcp(i,1)*sigd*evap(i,1) - ft(i,1)=ft(i,1)+sigd*wt(i,2)*(cl-cpd)*water(i,2)*(t(i,2) - & -t(i,1))*work(i)/cpn(i,1) - fq(i,1)=fq(i,1)+g*mp(i,2)*(qp(i,2)-q(i,1))* - & work(i)+sigd*evap(i,1) - fq(i,1)=fq(i,1)+g*am(i)*(q(i,2)-q(i,1))*work(i) - fu(i,1)=fu(i,1)+g*work(i)*(mp(i,2)*(up(i,2)-u(i,1)) - & +am(i)*(u(i,2)-u(i,1))) - fv(i,1)=fv(i,1)+g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1)) - & +am(i)*(v(i,2)-v(i,1))) - 1240 continue - do 1260 j=2,nl - do 1250 i=1,ncum - if(j.le.inb(i))then - fq(i,1)=fq(i,1) - & +g*work(i)*ment(i,j,1)*(qent(i,j,1)-q(i,1)) - fu(i,1)=fu(i,1) - & +g*work(i)*ment(i,j,1)*(uent(i,j,1)-u(i,1)) - fv(i,1)=fv(i,1) - & +g*work(i)*ment(i,j,1)*(vent(i,j,1)-v(i,1)) - endif - 1250 continue - 1260 continue -c -c *** Calculate tendencies of potential temperature and mixing ratio *** -c *** at levels above the lowest level *** -c -c *** First find the net saturated updraft and downdraft mass fluxes *** -c *** through each level *** -c - do 1500 i=2,nl+1 -c - num1=0 - do 1265 ij=1,ncum - if(i.le.inb(ij))num1=num1+1 - 1265 continue - if(num1.le.0)go to 1500 -c - call zilch(amp1,ncum) - call zilch(ad,ncum) -c - do 1280 k=i+1,nl+1 - do 1270 ij=1,ncum - if((i.ge.nk(ij)).and.(i.le.inb(ij)) - & .and.(k.le.(inb(ij)+1)))then - amp1(ij)=amp1(ij)+m(ij,k) - endif - 1270 continue - 1280 continue -c - do 1310 k=1,i - do 1300 j=i+1,nl+1 - do 1290 ij=1,ncum - if((j.le.(inb(ij)+1)).and.(i.le.inb(ij)))then - amp1(ij)=amp1(ij)+ment(ij,k,j) - endif - 1290 continue - 1300 continue - 1310 continue - do 1340 k=1,i-1 - do 1330 j=i,nl+1 - do 1320 ij=1,ncum - if((i.le.inb(ij)).and.(j.le.inb(ij)))then - ad(ij)=ad(ij)+ment(ij,j,k) - endif - 1320 continue - 1330 continue - 1340 continue -c - do 1350 ij=1,ncum - if(i.le.inb(ij))then - dpinv=0.01/(ph(ij,i)-ph(ij,i+1)) - cpinv=1.0/cpn(ij,i) -c - ft(ij,i)=ft(ij,i) - & +g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij,i) - & +(gz(ij,i+1)-gz(ij,i))*cpinv) - & -ad(ij)*(t(ij,i)-t(ij,i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) - & -sigd*lvcp(ij,i)*evap(ij,i) - ft(ij,i)=ft(ij,i)+g*dpinv*ment(ij,i,i)*(hp(ij,i)-h(ij,i)+ - & t(ij,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv - ft(ij,i)=ft(ij,i)+sigd*wt(ij,i+1)*(cl-cpd)*water(ij,i+1)* - & (t(ij,i+1)-t(ij,i))*dpinv*cpinv - fq(ij,i)=fq(ij,i)+g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij,i))- - & ad(ij)*(q(ij,i)-q(ij,i-1))) - fu(ij,i)=fu(ij,i)+g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij,i))- - & ad(ij)*(u(ij,i)-u(ij,i-1))) - fv(ij,i)=fv(ij,i)+g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij,i))- - & ad(ij)*(v(ij,i)-v(ij,i-1))) - endif - 1350 continue - do 1370 k=1,i-1 - do 1360 ij=1,ncum - if(i.le.inb(ij))then - awat=elij(ij,k,i)-(1.-ep(ij,i))*clw(ij,i) - awat=max(awat,0.0) - fq(ij,i)=fq(ij,i) - & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-awat-q(ij,i)) - fu(ij,i)=fu(ij,i) - & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) - fv(ij,i)=fv(ij,i) - & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) -c (saturated updrafts resulting from mixing) ! cld - qcond(ij,i)=qcond(ij,i)+(elij(ij,k,i)-awat) ! cld - nqcond(ij,i)=nqcond(ij,i)+1. ! cld - endif - 1360 continue - 1370 continue - do 1390 k=i,nl+1 - do 1380 ij=1,ncum - if((i.le.inb(ij)).and.(k.le.inb(ij)))then - fq(ij,i)=fq(ij,i) - & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-q(ij,i)) - fu(ij,i)=fu(ij,i) - & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) - fv(ij,i)=fv(ij,i) - & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) - endif - 1380 continue - 1390 continue - do 1400 ij=1,ncum - if(i.le.inb(ij))then - fq(ij,i)=fq(ij,i) - & +sigd*evap(ij,i)+g*(mp(ij,i+1)* - & (qp(ij,i+1)-q(ij,i)) - & -mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv - fu(ij,i)=fu(ij,i) - & +g*(mp(ij,i+1)*(up(ij,i+1)-u(ij,i))-mp(ij,i)* - & (up(ij,i)-u(ij,i-1)))*dpinv - fv(ij,i)=fv(ij,i) - & +g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij,i))-mp(ij,i)* - & (vp(ij,i)-v(ij,i-1)))*dpinv -C (saturated downdrafts resulting from mixing) ! cld - do k=i+1,inb(ij) ! cld - qcond(ij,i)=qcond(ij,i)+elij(ij,k,i) ! cld - nqcond(ij,i)=nqcond(ij,i)+1. ! cld - enddo ! cld -C (particular case: no detraining level is found) ! cld - if (nent(ij,i).eq.0) then ! cld - qcond(ij,i)=qcond(ij,i)+(1.-ep(ij,i))*clw(ij,i) ! cld - nqcond(ij,i)=nqcond(ij,i)+1. ! cld - endif ! cld - if (nqcond(ij,i).ne.0.) then ! cld - qcond(ij,i)=qcond(ij,i)/nqcond(ij,i) ! cld - endif ! cld - endif - 1400 continue - 1500 continue -c -c *** Adjust tendencies at top of convection layer to reflect *** -c *** actual position of the level zero cape *** -c - do 503 ij=1,ncum - fqold=fq(ij,inb(ij)) - fq(ij,inb(ij))=fq(ij,inb(ij))*(1.-frac(ij)) - fq(ij,inb(ij)-1)=fq(ij,inb(ij)-1) - & +frac(ij)*fqold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ - 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*lv(ij,inb(ij)) - & /lv(ij,inb(ij)-1) - ftold=ft(ij,inb(ij)) - ft(ij,inb(ij))=ft(ij,inb(ij))*(1.-frac(ij)) - ft(ij,inb(ij)-1)=ft(ij,inb(ij)-1) - & +frac(ij)*ftold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ - 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*cpn(ij,inb(ij)) - & /cpn(ij,inb(ij)-1) - fuold=fu(ij,inb(ij)) - fu(ij,inb(ij))=fu(ij,inb(ij))*(1.-frac(ij)) - fu(ij,inb(ij)-1)=fu(ij,inb(ij)-1) - & +frac(ij)*fuold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ - 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) - fvold=fv(ij,inb(ij)) - fv(ij,inb(ij))=fv(ij,inb(ij))*(1.-frac(ij)) - fv(ij,inb(ij)-1)=fv(ij,inb(ij)-1) - & +frac(ij)*fvold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ - 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) - 503 continue -c -c *** Very slightly adjust tendencies to force exact *** -c *** enthalpy, momentum and tracer conservation *** -c - do 682 ij=1,ncum - ents(ij)=0.0 - uav(ij)=0.0 - vav(ij)=0.0 - do 681 i=1,inb(ij) - ents(ij)=ents(ij) - & +(cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)-ph(ij,i+1)) - uav(ij)=uav(ij)+fu(ij,i)*(ph(ij,i)-ph(ij,i+1)) - vav(ij)=vav(ij)+fv(ij,i)*(ph(ij,i)-ph(ij,i+1)) - 681 continue - 682 continue - do 683 ij=1,ncum - ents(ij)=ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) - uav(ij)=uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) - vav(ij)=vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) - 683 continue - do 642 ij=1,ncum - do 641 i=1,inb(ij) - ft(ij,i)=ft(ij,i)-ents(ij)/cpn(ij,i) - fu(ij,i)=(1.-cu)*(fu(ij,i)-uav(ij)) - fv(ij,i)=(1.-cu)*(fv(ij,i)-vav(ij)) - 641 continue - 642 continue -c - do 1810 k=1,nl+1 - do 1800 i=1,ncum - if((q(i,k)+delt*fq(i,k)).lt.0.0)iflag(i)=10 - 1800 continue - 1810 continue -c -c - do 1900 i=1,ncum - if(iflag(i).gt.2)then - precip(i)=0.0 - cbmf(i)=0.0 - endif - 1900 continue - do 1920 k=1,nl - do 1910 i=1,ncum - if(iflag(i).gt.2)then - ft(i,k)=0.0 - fq(i,k)=0.0 - fu(i,k)=0.0 - fv(i,k)=0.0 - qcondc(i,k)=0.0 ! cld - endif - 1910 continue - 1920 continue - - do k=1,nl+1 - do i=1,ncum - Ma(i,k) = 0. - enddo - enddo - do k=nl,1,-1 - do i=1,ncum - Ma(i,k) = Ma(i,k+1)+m(i,k) - enddo - enddo - -c -c *** diagnose the in-cloud mixing ratio *** ! cld -c *** of condensed water *** ! cld -c ! cld - DO ij=1,ncum ! cld - do i=1,nd ! cld - mac(ij,i)=0.0 ! cld - wa(ij,i)=0.0 ! cld - siga(ij,i)=0.0 ! cld - enddo ! cld - do i=nk(ij),inb(ij) ! cld - do k=i+1,inb(ij)+1 ! cld - mac(ij,i)=mac(ij,i)+m(ij,k) ! cld - enddo ! cld - enddo ! cld - do i=icb(ij),inb(ij)-1 ! cld - ax(ij,i)=0. ! cld - do j=icb(ij),i ! cld - ax(ij,i)=ax(ij,i)+rrd*(tvp(ij,j)-tv(ij,j)) ! cld - : *(ph(ij,j)-ph(ij,j+1))/p(ij,j) ! cld - enddo ! cld - if (ax(ij,i).gt.0.0) then ! cld - wa(ij,i)=sqrt(2.*ax(ij,i)) ! cld - endif ! cld - enddo ! cld - do i=1,nl ! cld - if (wa(ij,i).gt.0.0) ! cld - : siga(ij,i)=mac(ij,i)/wa(ij,i) ! cld - : *rrd*tvp(ij,i)/p(ij,i)/100./delta ! cld - siga(ij,i) = min(siga(ij,i),1.0) ! cld - qcondc(ij,i)=siga(ij,i)*clw(ij,i)*(1.-ep(ij,i)) ! cld - : + (1.-siga(ij,i))*qcond(ij,i) ! cld - enddo ! cld - ENDDO ! cld - - return - end - - SUBROUTINE cv_uncompress(nloc,len,ncum,nd,idcum - : ,iflag - : ,precip,cbmf - : ,ft,fq,fu,fv - : ,Ma,qcondc - : ,iflag1 - : ,precip1,cbmf1 - : ,ft1,fq1,fu1,fv1 - : ,Ma1,qcondc1 - : ) - implicit none - - include "cvparam.h" - -c inputs: - integer len, ncum, nd, nloc - integer idcum(nloc) - integer iflag(nloc) - real precip(nloc), cbmf(nloc) - real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) - real Ma(nloc,nd) - real qcondc(nloc,nd) !cld - -c outputs: - integer iflag1(len) - real precip1(len), cbmf1(len) - real ft1(len,nd), fq1(len,nd), fu1(len,nd), fv1(len,nd) - real Ma1(len,nd) - real qcondc1(len,nd) !cld - -c local variables: - integer i,k - - do 2000 i=1,ncum - precip1(idcum(i))=precip(i) - cbmf1(idcum(i))=cbmf(i) - iflag1(idcum(i))=iflag(i) - 2000 continue - - do 2020 k=1,nl - do 2010 i=1,ncum - ft1(idcum(i),k)=ft(i,k) - fq1(idcum(i),k)=fq(i,k) - fu1(idcum(i),k)=fu(i,k) - fv1(idcum(i),k)=fv(i,k) - Ma1(idcum(i),k)=Ma(i,k) - qcondc1(idcum(i),k)=qcondc(i,k) - 2010 continue - 2020 continue - - return - end -