/[lmdze]/trunk/libf/phylmd/aaam_bud.f90
ViewVC logotype

Contents of /trunk/libf/phylmd/aaam_bud.f90

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3 - (show annotations)
Wed Feb 27 13:16:39 2008 UTC (16 years, 2 months ago) by guez
Original Path: trunk/libf/phylmd/aaam_bud.f
File size: 10819 byte(s)
Initial import
1 subroutine aaam_bud (iam,nlon,nlev,rjour,rsec,
2 i rea,rg,ome,
3 i plat,plon,phis,
4 i dragu,liftu,phyu,
5 i dragv,liftv,phyv,
6 i p, u, v,
7 o aam, torsfc)
8 c
9 use dimens_m
10 use dimphy
11 implicit none
12 c======================================================================
13 c Auteur(s): F.Lott (LMD/CNRS) date: 20031020
14 c Object: Compute different terms of the axial AAAM Budget.
15 C No outputs, every AAM quantities are written on the IAM
16 C File.
17 c
18 c Modif : I.Musat (LMD/CNRS) date : 20041020
19 c Outputs : axial components of wind AAM "aam" and total surface torque "torsfc",
20 c but no write in the iam file.
21 c
22 C WARNING: Only valid for regular rectangular grids.
23 C REMARK: CALL DANS PHYSIQ AFTER lift_noro:
24 C CALL aaam_bud (27,klon,klev,rjourvrai,gmtime,
25 C C ra,rg,romega,
26 C C rlat,rlon,pphis,
27 C C zustrdr,zustrli,zustrph,
28 C C zvstrdr,zvstrli,zvstrph,
29 C C paprs,u,v)
30 C
31 C======================================================================
32 c Explicit Arguments:
33 c ==================
34 c iam-----input-I-File number where AAMs and torques are written
35 c It is a formatted file that has been opened
36 c in physiq.F
37 c nlon----input-I-Total number of horizontal points that get into physics
38 c nlev----input-I-Number of vertical levels
39 c rjour---input-R-Jour compte depuis le debut de la simu (run.def)
40 c rsec----input-R-Seconde de la journee
41 c rea-----input-R-Earth radius
42 c rg------input-R-gravity constant
43 c ome-----input-R-Earth rotation rate
44 c plat ---input-R-Latitude en degres
45 c plon ---input-R-Longitude en degres
46 c phis ---input-R-Geopotential at the ground
47 c dragu---input-R-orodrag stress (zonal)
48 c liftu---input-R-orolift stress (zonal)
49 c phyu----input-R-Stress total de la physique (zonal)
50 c dragv---input-R-orodrag stress (Meridional)
51 c liftv---input-R-orolift stress (Meridional)
52 c phyv----input-R-Stress total de la physique (Meridional)
53 c p-------input-R-Pressure (Pa) at model half levels
54 c u-------input-R-Horizontal wind (m/s)
55 c v-------input-R-Meridional wind (m/s)
56 c aam-----output-R-Axial Wind AAM (=raam(3))
57 c torsfc--output-R-Total surface torque (=tmou(3)+tsso(3)+tbls(3))
58 c
59 c Implicit Arguments:
60 c ===================
61 c
62 c iim--common-I: Number of longitude intervals
63 c jjm--common-I: Number of latitude intervals
64 c klon-common-I: Number of points seen by the physics
65 c iim*(jjm-1)+2 for instance
66 c klev-common-I: Number of vertical layers
67 c======================================================================
68 c Local Variables:
69 c ================
70 c dlat-----R: Latitude increment (Radians)
71 c dlon-----R: Longitude increment (Radians)
72 c raam ---R: Wind AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale)
73 c oaam ---R: Mass AAM (3 Components, 1 & 2 Equatoriales; 3 Axiale)
74 c tmou-----R: Resolved Mountain torque (3 components)
75 c tsso-----R: Parameterised Moutain drag torque (3 components)
76 c tbls-----R: Parameterised Boundary layer torque (3 components)
77 c
78 c LOCAL ARRAY:
79 c ===========
80 c zs ---R: Topographic height
81 c ps ---R: Surface Pressure
82 c ub ---R: Barotropic wind zonal
83 c vb ---R: Barotropic wind meridional
84 c zlat ---R: Latitude in radians
85 c zlon ---R: Longitude in radians
86 c======================================================================
87
88 c
89 c ARGUMENTS
90 c
91 INTEGER iam,nlon,nlev
92 REAL rjour
93 real, intent(in):: rsec
94 real rea
95 real, intent(in):: rg
96 real ome
97 REAL, intent(in):: plat(nlon),plon(nlon)
98 real phis(nlon)
99 REAL dragu(nlon),liftu(nlon),phyu(nlon)
100 REAL dragv(nlon),liftv(nlon),phyv(nlon)
101 REAL, intent(in):: p(nlon,nlev+1)
102 real u(nlon,nlev), v(nlon,nlev)
103 c
104 c Variables locales:
105 c
106 INTEGER i,j,k,l
107 REAL xpi,hadley,hadday
108 REAL dlat,dlon
109 REAL raam(3),oaam(3),tmou(3),tsso(3),tbls(3)
110 integer iax
111 cIM ajout aam, torsfc
112 c aam = composante axiale du Wind AAM raam
113 c torsfc = composante axiale de (tmou+tsso+tbls)
114 REAL aam, torsfc
115
116 REAL ZS(801,401),PS(801,401)
117 REAL UB(801,401),VB(801,401)
118 REAL SSOU(801,401),SSOV(801,401)
119 REAL BLSU(801,401),BLSV(801,401)
120 REAL ZLON(801),ZLAT(401)
121 C
122 C PUT AAM QUANTITIES AT ZERO:
123 C
124 if(iim+1.gt.801.or.jjm+1.gt.401)then
125 print *,' Pb de dimension dans aaam_bud'
126 stop
127 endif
128
129 xpi=acos(-1.)
130 hadley=1.e18
131 hadday=1.e18*24.*3600.
132 dlat=xpi/float(jjm)
133 dlon=2.*xpi/float(iim)
134
135 do iax=1,3
136 oaam(iax)=0.
137 raam(iax)=0.
138 tmou(iax)=0.
139 tsso(iax)=0.
140 tbls(iax)=0.
141 enddo
142
143 C MOUNTAIN HEIGHT, PRESSURE AND BAROTROPIC WIND:
144
145 C North pole values (j=1):
146
147 l=1
148
149 ub(1,1)=0.
150 vb(1,1)=0.
151 do k=1,nlev
152 ub(1,1)=ub(1,1)+u(l,k)*(p(l,k)-p(l,k+1))/rg
153 vb(1,1)=vb(1,1)+v(l,k)*(p(l,k)-p(l,k+1))/rg
154 enddo
155
156 zlat(1)=plat(l)*xpi/180.
157
158 do i=1,iim+1
159
160 zs(i,1)=phis(l)/rg
161 ps(i,1)=p(l,1)
162 ub(i,1)=ub(1,1)
163 vb(i,1)=vb(1,1)
164 ssou(i,1)=dragu(l)+liftu(l)
165 ssov(i,1)=dragv(l)+liftv(l)
166 blsu(i,1)=phyu(l)-dragu(l)-liftu(l)
167 blsv(i,1)=phyv(l)-dragv(l)-liftv(l)
168
169 enddo
170
171
172 do j = 2,jjm
173
174 C Values at Greenwich (Periodicity)
175
176 zs(iim+1,j)=phis(l+1)/rg
177 ps(iim+1,j)=p(l+1,1)
178 ssou(iim+1,j)=dragu(l+1)+liftu(l+1)
179 ssov(iim+1,j)=dragv(l+1)+liftv(l+1)
180 blsu(iim+1,j)=phyu(l+1)-dragu(l+1)-liftu(l+1)
181 blsv(iim+1,j)=phyv(l+1)-dragv(l+1)-liftv(l+1)
182 zlon(iim+1)=-plon(l+1)*xpi/180.
183 zlat(j)=plat(l+1)*xpi/180.
184
185 ub(iim+1,j)=0.
186 vb(iim+1,j)=0.
187 do k=1,nlev
188 ub(iim+1,j)=ub(iim+1,j)+u(l+1,k)*(p(l+1,k)-p(l+1,k+1))/rg
189 vb(iim+1,j)=vb(iim+1,j)+v(l+1,k)*(p(l+1,k)-p(l+1,k+1))/rg
190 enddo
191
192
193 do i=1,iim
194
195 l=l+1
196 zs(i,j)=phis(l)/rg
197 ps(i,j)=p(l,1)
198 ssou(i,j)=dragu(l)+liftu(l)
199 ssov(i,j)=dragv(l)+liftv(l)
200 blsu(i,j)=phyu(l)-dragu(l)-liftu(l)
201 blsv(i,j)=phyv(l)-dragv(l)-liftv(l)
202 zlon(i)=plon(l)*xpi/180.
203
204 ub(i,j)=0.
205 vb(i,j)=0.
206 do k=1,nlev
207 ub(i,j)=ub(i,j)+u(l,k)*(p(l,k)-p(l,k+1))/rg
208 vb(i,j)=vb(i,j)+v(l,k)*(p(l,k)-p(l,k+1))/rg
209 enddo
210
211 enddo
212
213 enddo
214
215
216 C South Pole
217
218 l=l+1
219 ub(1,jjm+1)=0.
220 vb(1,jjm+1)=0.
221 do k=1,nlev
222 ub(1,jjm+1)=ub(1,jjm+1)+u(l,k)*(p(l,k)-p(l,k+1))/rg
223 vb(1,jjm+1)=vb(1,jjm+1)+v(l,k)*(p(l,k)-p(l,k+1))/rg
224 enddo
225 zlat(jjm+1)=plat(l)*xpi/180.
226
227 do i=1,iim+1
228 zs(i,jjm+1)=phis(l)/rg
229 ps(i,jjm+1)=p(l,1)
230 ssou(i,jjm+1)=dragu(l)+liftu(l)
231 ssov(i,jjm+1)=dragv(l)+liftv(l)
232 blsu(i,jjm+1)=phyu(l)-dragu(l)-liftu(l)
233 blsv(i,jjm+1)=phyv(l)-dragv(l)-liftv(l)
234 ub(i,jjm+1)=ub(1,jjm+1)
235 vb(i,jjm+1)=vb(1,jjm+1)
236 enddo
237
238 C
239 C MOMENT ANGULAIRE
240 C
241 DO j=1,jjm
242 DO i=1,iim
243
244 raam(1)=raam(1)-rea**3*dlon*dlat*0.5*
245 c (cos(zlon(i ))*sin(zlat(j ))*cos(zlat(j ))*ub(i ,j )
246 c +cos(zlon(i ))*sin(zlat(j+1))*cos(zlat(j+1))*ub(i ,j+1))
247 c +rea**3*dlon*dlat*0.5*
248 c (sin(zlon(i ))*cos(zlat(j ))*vb(i ,j )
249 c +sin(zlon(i ))*cos(zlat(j+1))*vb(i ,j+1))
250
251 oaam(1)=oaam(1)-ome*rea**4*dlon*dlat/rg*0.5*
252 c (cos(zlon(i ))*cos(zlat(j ))**2*sin(zlat(j ))*ps(i ,j )
253 c +cos(zlon(i ))*cos(zlat(j+1))**2*sin(zlat(j+1))*ps(i ,j+1))
254
255 raam(2)=raam(2)-rea**3*dlon*dlat*0.5*
256 c (sin(zlon(i ))*sin(zlat(j ))*cos(zlat(j ))*ub(i ,j )
257 c +sin(zlon(i ))*sin(zlat(j+1))*cos(zlat(j+1))*ub(i ,j+1))
258 c -rea**3*dlon*dlat*0.5*
259 c (cos(zlon(i ))*cos(zlat(j ))*vb(i ,j )
260 c +cos(zlon(i ))*cos(zlat(j+1))*vb(i ,j+1))
261
262 oaam(2)=oaam(2)-ome*rea**4*dlon*dlat/rg*0.5*
263 c (sin(zlon(i ))*cos(zlat(j ))**2*sin(zlat(j ))*ps(i ,j )
264 c +sin(zlon(i ))*cos(zlat(j+1))**2*sin(zlat(j+1))*ps(i ,j+1))
265
266 raam(3)=raam(3)+rea**3*dlon*dlat*0.5*
267 c (cos(zlat(j))**2*ub(i,j)+cos(zlat(j+1))**2*ub(i,j+1))
268
269 oaam(3)=oaam(3)+ome*rea**4*dlon*dlat/rg*0.5*
270 c (cos(zlat(j))**3*ps(i,j)+cos(zlat(j+1))**3*ps(i,j+1))
271
272 ENDDO
273 ENDDO
274
275 C
276 C COUPLE DES MONTAGNES:
277 C
278
279 DO j=1,jjm
280 DO i=1,iim
281 tmou(1)=tmou(1)-rea**2*dlon*0.5*sin(zlon(i))
282 c *(zs(i,j)-zs(i,j+1))
283 c *(cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j))
284 tmou(2)=tmou(2)+rea**2*dlon*0.5*cos(zlon(i))
285 c *(zs(i,j)-zs(i,j+1))
286 c *(cos(zlat(j+1))*ps(i,j+1)+cos(zlat(j))*ps(i,j))
287 ENDDO
288 ENDDO
289
290 DO j=2,jjm
291 DO i=1,iim
292 tmou(1)=tmou(1)+rea**2*dlat*0.5*sin(zlat(j))
293 c *(zs(i+1,j)-zs(i,j))
294 c *(cos(zlon(i+1))*ps(i+1,j)+cos(zlon(i))*ps(i,j))
295 tmou(2)=tmou(2)+rea**2*dlat*0.5*sin(zlat(j))
296 c *(zs(i+1,j)-zs(i,j))
297 c *(sin(zlon(i+1))*ps(i+1,j)+sin(zlon(i))*ps(i,j))
298 tmou(3)=tmou(3)-rea**2*dlat*0.5*
299 c cos(zlat(j))*(zs(i+1,j)-zs(i,j))*(ps(i+1,j)+ps(i,j))
300 ENDDO
301 ENDDO
302
303 C
304 C COUPLES DES DIFFERENTES FRICTION AU SOL:
305 C
306 l=1
307 DO j=2,jjm
308 DO i=1,iim
309 l=l+1
310 tsso(1)=tsso(1)-rea**3*cos(zlat(j))*dlon*dlat*
311 c ssou(i,j) *sin(zlat(j))*cos(zlon(i))
312 c +rea**3*cos(zlat(j))*dlon*dlat*
313 c ssov(i,j) *sin(zlon(i))
314
315 tsso(2)=tsso(2)-rea**3*cos(zlat(j))*dlon*dlat*
316 c ssou(i,j) *sin(zlat(j))*sin(zlon(i))
317 c -rea**3*cos(zlat(j))*dlon*dlat*
318 c ssov(i,j) *cos(zlon(i))
319
320 tsso(3)=tsso(3)+rea**3*cos(zlat(j))*dlon*dlat*
321 c ssou(i,j) *cos(zlat(j))
322
323 tbls(1)=tbls(1)-rea**3*cos(zlat(j))*dlon*dlat*
324 c blsu(i,j) *sin(zlat(j))*cos(zlon(i))
325 c +rea**3*cos(zlat(j))*dlon*dlat*
326 c blsv(i,j) *sin(zlon(i))
327
328 tbls(2)=tbls(2)-rea**3*cos(zlat(j))*dlon*dlat*
329 c blsu(i,j) *sin(zlat(j))*sin(zlon(i))
330 c -rea**3*cos(zlat(j))*dlon*dlat*
331 c blsv(i,j) *cos(zlon(i))
332
333 tbls(3)=tbls(3)+rea**3*cos(zlat(j))*dlon*dlat*
334 c blsu(i,j) *cos(zlat(j))
335
336 ENDDO
337 ENDDO
338
339
340 100 format(F12.5,15(1x,F12.5))
341
342 aam=raam(3)
343 torsfc= tmou(3)+tsso(3)+tbls(3)
344 c
345 RETURN
346 END

  ViewVC Help
Powered by ViewVC 1.1.21