--- trunk/libf/phylmd/clcdrag.f90 2012/04/20 14:58:43 61 +++ trunk/libf/phylmd/clcdrag.f90 2012/07/26 14:37:37 62 @@ -1,103 +1,107 @@ -SUBROUTINE clcdrag(klon, knon, nsrf, zxli, u, v, t, q, zgeop, ts, qsurf, & - rugos, pcfm, pcfh) +module clcdrag_m - ! From LMDZ4/libf/phylmd/clcdrag.F90, version 1.1.1.1 2004/05/19 12:53:07 + IMPLICIT NONE - use indicesol - use SUPHEC_M - use yoethf_m +contains - IMPLICIT NONE + SUBROUTINE clcdrag(klon, knon, nsrf, zxli, u, v, t, q, zgeop, ts, qsurf, & + rugos, pcfm, pcfh) + + ! From LMDZ4/libf/phylmd/clcdrag.F90, version 1.1.1.1 2004/05/19 12:53:07 + + USE indicesol, ONLY : is_oce + USE suphec_m, ONLY : rcpd, retv, rg + USE yoethf_m, ONLY : rvtmp2 + + ! Objet : calcul des cdrags pour le moment (pcfm) et les flux de + ! chaleur sensible et latente (pcfh). + + ! knon----input-I- nombre de points pour un type de surface + ! nsrf----input-I- indice pour le type de surface; voir indicesol.inc + ! zxli----input-L- calcul des cdrags selon Laurent Li + ! u-------input-R- vent zonal au 1er niveau du modele + ! v-------input-R- vent meridien au 1er niveau du modele + ! t-------input-R- temperature de l'air au 1er niveau du modele + ! q-------input-R- humidite de l'air au 1er niveau du modele + ! ts------input-R- temperature de l'air a la surface + ! qsurf---input-R- humidite de l'air a la surface + ! rugos---input-R- rugosite + + ! pcfm---output-R- cdrag pour le moment + ! pcfh---output-R- cdrag pour les flux de chaleur latente et sensible - ! Objet : calcul des cdrags pour le moment (pcfm) et les flux de - ! chaleur sensible et latente (pcfh). + INTEGER, intent(in) :: klon + ! dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) - ! knon----input-I- nombre de points pour un type de surface - ! nsrf----input-I- indice pour le type de surface; voir indicesol.inc - ! zxli----input-L- calcul des cdrags selon Laurent Li - ! u-------input-R- vent zonal au 1er niveau du modele - ! v-------input-R- vent meridien au 1er niveau du modele - ! t-------input-R- temperature de l'air au 1er niveau du modele - ! q-------input-R- humidite de l'air au 1er niveau du modele - ! ts------input-R- temperature de l'air a la surface - ! qsurf---input-R- humidite de l'air a la surface - ! rugos---input-R- rugosite - - ! pcfm---output-R- cdrag pour le moment - ! pcfh---output-R- cdrag pour les flux de chaleur latente et sensible - - INTEGER, intent(in) :: klon - ! dimension de la grille physique (= nb_pts_latitude X nb_pts_longitude) - - INTEGER, intent(in) :: knon, nsrf - - ! Fonctions thermodynamiques et fonctions d'instabilite - LOGICAL, intent(in) :: zxli ! utiliser un jeu de fonctions simples - - REAL, intent(in), dimension(klon) :: u, v, t, q - REAL, intent(in):: zgeop(klon) ! géopotentiel au 1er niveau du modèle - REAL, intent(in), dimension(klon) :: ts, qsurf - REAL, intent(in), dimension(klon) :: rugos - REAL, intent(out), dimension(klon) :: pcfm, pcfh - - ! Quelques constantes et options: - REAL, PARAMETER :: ckap=0.40, cb=5.0, cc=5.0, cd=5.0, cepdu2=(0.1)**2 - - ! Variables locales : - INTEGER :: i - REAL :: zdu2, ztsolv, ztvd, zscf - REAL :: zucf, zcr - REAL :: friv, frih - REAL, dimension(klon) :: zcfm1, zcfm2 - REAL, dimension(klon) :: zcfh1, zcfh2 - REAL, dimension(klon) :: zcdn - REAL, dimension(klon) :: zri - - !-------------------------------------------------------------------- - - ! Calculer le frottement au sol (Cdrag) - - DO i = 1, knon - zdu2 = max(cepdu2,u(i)**2+v(i)**2) - ztsolv = ts(i) * (1.0+RETV*qsurf(i)) - ztvd = (t(i)+zgeop(i)/RCPD/(1.+RVTMP2*q(i))) & - *(1.+RETV*q(i)) - zri(i) = zgeop(i)*(ztvd-ztsolv)/(zdu2*ztvd) - zcdn(i) = (ckap/log(1.+zgeop(i)/(RG*rugos(i))))**2 - - IF (zri(i) .gt. 0.) THEN - ! situation stable - zri(i) = min(20.,zri(i)) - IF (.NOT. zxli) THEN - zscf = SQRT(1.+cd*ABS(zri(i))) - FRIV = AMAX1(1. / (1.+2.*CB*zri(i)/ZSCF), 0.1) - zcfm1(i) = zcdn(i) * FRIV - FRIH = AMAX1(1./ (1.+3.*CB*zri(i)*ZSCF), 0.1 ) - zcfh1(i) = 0.8 * zcdn(i) * FRIH - pcfm(i) = zcfm1(i) - pcfh(i) = zcfh1(i) - ELSE - pcfm(i) = zcdn(i)* fsta(zri(i)) - pcfh(i) = zcdn(i)* fsta(zri(i)) - ENDIF - ELSE - ! situation instable - IF (.NOT. zxli) THEN - zucf = 1./(1.+3.0*cb*cc*zcdn(i)*SQRT(ABS(zri(i)) & - *(1.0+zgeop(i)/(RG*rugos(i))))) - zcfm2(i) = zcdn(i)*amax1((1.-2.0*cb*zri(i)*zucf),0.1) - zcfh2(i) = 0.8 * zcdn(i)*amax1((1.-3.0*cb*zri(i)*zucf),0.1) - pcfm(i) = zcfm2(i) - pcfh(i) = zcfh2(i) - ELSE - pcfm(i) = zcdn(i)* fins(zri(i)) - pcfh(i) = zcdn(i)* fins(zri(i)) - ENDIF - zcr = (0.0016/(zcdn(i)*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) - IF(nsrf == is_oce) pcfh(i) = 0.8 * zcdn(i) & - * (1. + zcr**1.25)**(1. / 1.25) - ENDIF - END DO + INTEGER, intent(in) :: knon, nsrf + + ! Fonctions thermodynamiques et fonctions d'instabilite + LOGICAL, intent(in) :: zxli ! utiliser un jeu de fonctions simples + + REAL, intent(in), dimension(klon) :: u, v, t, q + REAL, intent(in):: zgeop(klon) ! géopotentiel au 1er niveau du modèle + REAL, intent(in), dimension(klon) :: ts, qsurf + REAL, intent(in), dimension(klon) :: rugos + REAL, intent(out):: pcfm(:), pcfh(:) ! (knon) + + ! Quelques constantes et options: + REAL, PARAMETER :: ckap=0.40, cb=5.0, cc=5.0, cd=5.0, cepdu2=(0.1)**2 + + ! Variables locales : + INTEGER :: i + REAL :: zdu2, ztsolv, ztvd, zscf + REAL :: zucf, zcr + REAL :: friv, frih + REAL, dimension(klon) :: zcfm1, zcfm2 + REAL, dimension(klon) :: zcfh1, zcfh2 + REAL, dimension(klon) :: zcdn + REAL, dimension(klon) :: zri + + !-------------------------------------------------------------------- + + ! Calculer le frottement au sol (Cdrag) + + DO i = 1, knon + zdu2 = max(cepdu2,u(i)**2+v(i)**2) + ztsolv = ts(i) * (1.0+RETV*qsurf(i)) + ztvd = (t(i)+zgeop(i)/RCPD/(1.+RVTMP2*q(i))) & + *(1.+RETV*q(i)) + zri(i) = zgeop(i)*(ztvd-ztsolv)/(zdu2*ztvd) + zcdn(i) = (ckap/log(1.+zgeop(i)/(RG*rugos(i))))**2 + + IF (zri(i) .gt. 0.) THEN + ! situation stable + zri(i) = min(20.,zri(i)) + IF (.NOT. zxli) THEN + zscf = SQRT(1.+cd*ABS(zri(i))) + FRIV = AMAX1(1. / (1.+2.*CB*zri(i)/ZSCF), 0.1) + zcfm1(i) = zcdn(i) * FRIV + FRIH = AMAX1(1./ (1.+3.*CB*zri(i)*ZSCF), 0.1 ) + zcfh1(i) = 0.8 * zcdn(i) * FRIH + pcfm(i) = zcfm1(i) + pcfh(i) = zcfh1(i) + ELSE + pcfm(i) = zcdn(i)* fsta(zri(i)) + pcfh(i) = zcdn(i)* fsta(zri(i)) + ENDIF + ELSE + ! situation instable + IF (.NOT. zxli) THEN + zucf = 1./(1.+3.0*cb*cc*zcdn(i)*SQRT(ABS(zri(i)) & + *(1.0+zgeop(i)/(RG*rugos(i))))) + zcfm2(i) = zcdn(i)*amax1((1.-2.0*cb*zri(i)*zucf),0.1) + zcfh2(i) = 0.8 * zcdn(i)*amax1((1.-3.0*cb*zri(i)*zucf),0.1) + pcfm(i) = zcfm2(i) + pcfh(i) = zcfh2(i) + ELSE + pcfm(i) = zcdn(i)* fins(zri(i)) + pcfh(i) = zcdn(i)* fins(zri(i)) + ENDIF + zcr = (0.0016/(zcdn(i)*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) + IF(nsrf == is_oce) pcfh(i) = 0.8 * zcdn(i) & + * (1. + zcr**1.25)**(1. / 1.25) + ENDIF + END DO contains @@ -117,4 +121,6 @@ fins = SQRT(1.0-18.0*x) end function fins -END SUBROUTINE clcdrag + END SUBROUTINE clcdrag + +end module clcdrag_m