--- trunk/libf/phylmd/concvl.f90 2008/07/25 19:59:34 13 +++ trunk/libf/phylmd/concvl.f90 2008/08/05 13:31:32 17 @@ -1,9 +1,10 @@ -SUBROUTINE concvl(iflag_con,dtime,paprs,pplay,t,q,u,v,tra,ntra,work1, & - work2,d_t,d_q,d_u,d_v,d_tra,rain,snow,kbas,ktop,upwd,dnwd,dnwdbis,ma, & - cape,tvp,iflag,pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr,qcondc,wd, & - pmflxr,pmflxs,da,phi,mp) +SUBROUTINE concvl(iflag_con, dtime, paprs, pplay, t, q, u, v, tra,& + ntra, work1, work2, d_t, d_q, d_u, d_v, d_tra, rain, snow, kbas,& + ktop, upwd, dnwd, dnwdbis, ma, cape, tvp, iflag, pbase, bbase,& + dtvpdt1, dtvpdq1, dplcldt, dplcldr, qcondc, wd, pmflxr, pmflxs,& + da, phi, mp) - ! From phylmd/concvl.F,v 1.3 2005/04/15 12:36:17 + ! From phylmd/concvl.F, v 1.3 2005/04/15 12:36:17 ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 ! Objet: schema de convection de Emanuel (1991) interface @@ -39,8 +40,10 @@ ! Cape----output-R-CAPE (J/kg) ! Tvp-----output-R-Temperature virtuelle d'une parcelle soulevee ! adiabatiquement a partir du niveau 1 (K) - ! deltapb-output-R-distance entre LCL et base de la colonne (<0 ; Pa) - ! Ice_flag-input-L-TRUE->prise en compte de la thermodynamique de la glace + ! deltapb-output-R-distance entre LCL et base de la colonne (<0 ; + ! Pa) + ! Ice_flag-input-L-TRUE->prise en compte de la thermodynamique de + ! la glace INTEGER ntrac PARAMETER (ntrac=nqmx-2) @@ -48,34 +51,35 @@ INTEGER, INTENT (IN) :: iflag_con REAL, INTENT (IN) :: dtime - REAL, INTENT (IN) :: paprs(klon,klev+1) - REAL, INTENT (IN) :: pplay(klon,klev) - REAL t(klon,klev), q(klon,klev), u(klon,klev), v(klon,klev) - REAL tra(klon,klev,ntrac) + REAL, INTENT (IN) :: paprs(klon, klev+1) + REAL, INTENT (IN) :: pplay(klon, klev) + REAL t(klon, klev), q(klon, klev), u(klon, klev), v(klon, klev) + REAL, INTENT (IN):: tra(klon, klev, ntrac) INTEGER ntra - REAL work1(klon,klev), work2(klon,klev) - REAL pmflxr(klon,klev+1), pmflxs(klon,klev+1) + REAL work1(klon, klev), work2(klon, klev) + REAL pmflxr(klon, klev+1), pmflxs(klon, klev+1) - REAL d_t(klon,klev), d_q(klon,klev), d_u(klon,klev), d_v(klon,klev) - REAL d_tra(klon,klev,ntrac) + REAL d_t(klon, klev), d_q(klon, klev), d_u(klon, klev), d_v(klon,& + klev) + REAL d_tra(klon, klev, ntrac) REAL rain(klon), snow(klon) INTEGER kbas(klon), ktop(klon) - REAL em_ph(klon,klev+1), em_p(klon,klev) - REAL upwd(klon,klev), dnwd(klon,klev), dnwdbis(klon,klev) - REAL ma(klon,klev), cape(klon), tvp(klon,klev) - REAL da(klon,klev), phi(klon,klev,klev), mp(klon,klev) + REAL em_ph(klon, klev+1), em_p(klon, klev) + REAL upwd(klon, klev), dnwd(klon, klev), dnwdbis(klon, klev) + REAL ma(klon, klev), cape(klon), tvp(klon, klev) + REAL da(klon, klev), phi(klon, klev, klev), mp(klon, klev) INTEGER iflag(klon) REAL pbase(klon), bbase(klon) - REAL dtvpdt1(klon,klev), dtvpdq1(klon,klev) + REAL dtvpdt1(klon, klev), dtvpdq1(klon, klev) REAL dplcldt(klon), dplcldr(klon) - REAL qcondc(klon,klev) + REAL qcondc(klon, klev) REAL wd(klon) REAL zx_t, zdelta, zx_qs, zcor INTEGER i, k, itra - REAL qs(klon,klev) + REAL qs(klon, klev) REAL cbmf(klon) SAVE cbmf INTEGER ifrst @@ -95,14 +99,14 @@ DO k = 1, klev + 1 DO i = 1, klon - em_ph(i,k) = paprs(i,k)/100.0 - pmflxs(i,k) = 0. + em_ph(i, k) = paprs(i, k)/100.0 + pmflxs(i, k) = 0. END DO END DO DO k = 1, klev DO i = 1, klon - em_p(i,k) = pplay(i,k)/100.0 + em_p(i, k) = pplay(i, k)/100.0 END DO END DO @@ -110,11 +114,11 @@ IF (iflag_con==4) THEN DO k = 1, klev DO i = 1, klon - zx_t = t(i,k) - zdelta = max(0.,sign(1.,rtt-zx_t)) - zx_qs = min(0.5,r2es*foeew(zx_t,zdelta)/em_p(i,k)/100.0) + zx_t = t(i, k) + zdelta = max(0., sign(1., rtt-zx_t)) + zx_qs = min(0.5, r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0) zcor = 1./(1.-retv*zx_qs) - qs(i,k) = zx_qs*zcor + qs(i, k) = zx_qs*zcor END DO END DO ELSE @@ -122,13 +126,13 @@ ! convergence numerique) DO k = 1, klev DO i = 1, klon - zx_t = t(i,k) - zdelta = max(0.,sign(1.,rtt-zx_t)) - zx_qs = r2es*foeew(zx_t,zdelta)/em_p(i,k)/100.0 - zx_qs = min(0.5,zx_qs) + zx_t = t(i, k) + zdelta = max(0., sign(1., rtt-zx_t)) + zx_qs = r2es*foeew(zx_t, zdelta)/em_p(i, k)/100.0 + zx_qs = min(0.5, zx_qs) zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor - qs(i,k) = zx_qs + qs(i, k) = zx_qs END DO END DO END IF @@ -137,9 +141,10 @@ ! iflag_con = 3 -> equivalent to convect3 ! iflag_con = 4 -> equivalent to convect1/2 - CALL cv_driver(klon,klev,klev+1,ntra,iflag_con,t,q,qs,u,v,tra,em_p, & - em_ph,iflag,d_t,d_q,d_u,d_v,d_tra,rain,pmflxr,cbmf,work1,work2,kbas, & - ktop,dtime,ma,upwd,dnwd,dnwdbis,qcondc,wd,cape,da,phi,mp) + CALL cv_driver(klon, klev, klev+1, ntra, iflag_con, t, q, qs, u, v,& + tra, em_p, em_ph, iflag, d_t, d_q, d_u, d_v, d_tra, rain,& + pmflxr, cbmf, work1, work2, kbas, ktop, dtime, ma, upwd, dnwd,& + dnwdbis, qcondc, wd, cape, da, phi, mp) DO i = 1, klon rain(i) = rain(i)/86400. @@ -147,16 +152,16 @@ DO k = 1, klev DO i = 1, klon - d_t(i,k) = dtime*d_t(i,k) - d_q(i,k) = dtime*d_q(i,k) - d_u(i,k) = dtime*d_u(i,k) - d_v(i,k) = dtime*d_v(i,k) + d_t(i, k) = dtime*d_t(i, k) + d_q(i, k) = dtime*d_q(i, k) + d_u(i, k) = dtime*d_u(i, k) + d_v(i, k) = dtime*d_v(i, k) END DO END DO DO itra = 1, ntra DO k = 1, klev DO i = 1, klon - d_tra(i,k,itra) = dtime*d_tra(i,k,itra) + d_tra(i, k, itra) = dtime*d_tra(i, k, itra) END DO END DO END DO @@ -165,7 +170,7 @@ DO itra = 1, ntra DO k = 1, klev DO i = 1, klon - d_tra(i,k,itra) = 0. + d_tra(i, k, itra) = 0. END DO END DO END DO