/[lmdze]/trunk/libf/phylmd/diagphy.f
ViewVC logotype

Contents of /trunk/libf/phylmd/diagphy.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 3 - (show annotations)
Wed Feb 27 13:16:39 2008 UTC (16 years, 2 months ago) by guez
File size: 14341 byte(s)
Initial import
1 !
2 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/diagphy.F,v 1.1.1.1 2004/05/19 12:53:08 lmdzadmin Exp $
3 !
4 SUBROUTINE diagphy(airephy,tit,iprt
5 $ , tops, topl, sols, soll, sens
6 $ , evap, rain_fall, snow_fall, ts
7 $ , d_etp_tot, d_qt_tot, d_ec_tot
8 $ , fs_bound, fq_bound)
9 C======================================================================
10 C
11 C Purpose:
12 C Compute the thermal flux and the watter mass flux at the atmosphere
13 c boundaries. Print them and also the atmospheric enthalpy change and
14 C the atmospheric mass change.
15 C
16 C Arguments:
17 C airephy-------input-R- grid area
18 C tit---------input-A15- Comment to be added in PRINT (CHARACTER*15)
19 C iprt--------input-I- PRINT level ( <=0 : no PRINT)
20 C tops(klon)--input-R- SW rad. at TOA (W/m2), positive up.
21 C topl(klon)--input-R- LW rad. at TOA (W/m2), positive down
22 C sols(klon)--input-R- Net SW flux above surface (W/m2), positive up
23 C (i.e. -1 * flux absorbed by the surface)
24 C soll(klon)--input-R- Net LW flux above surface (W/m2), positive up
25 C (i.e. flux emited - flux absorbed by the surface)
26 C sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down
27 C evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux
28 C (kg/m2/s), positive up
29 C rain_fall(klon)
30 C --input-R- Liquid watter mass flux (kg/m2/s), positive down
31 C snow_fall(klon)
32 C --input-R- Solid watter mass flux (kg/m2/s), positive down
33 C ts(klon)----input-R- Surface temperature (K)
34 C d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy
35 C change (W/m2)
36 C d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass
37 C change (kg/m2/s)
38 C d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy
39 C change (W/m2)
40 C
41 C fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2)
42 C fq_bound---output-R- Watter mass flux at the atmosphere boundaries (kg/m2/s)
43 C
44 C J.L. Dufresne, July 2002
45 C======================================================================
46 C
47 use dimens_m
48 use dimphy
49 use YOMCST
50 use yoethf
51 implicit none
52
53 C
54 C Input variables
55 real airephy(klon)
56 CHARACTER*15 tit
57 INTEGER iprt
58 real tops(klon),topl(klon),sols(klon),soll(klon)
59 real sens(klon),evap(klon),rain_fall(klon),snow_fall(klon)
60 REAL ts(klon)
61 REAL d_etp_tot, d_qt_tot, d_ec_tot
62 c Output variables
63 REAL fs_bound, fq_bound
64 C
65 C Local variables
66 real stops,stopl,ssols,ssoll
67 real ssens,sfront,slat
68 real airetot, zcpvap, zcwat, zcice
69 REAL rain_fall_tot, snow_fall_tot, evap_tot
70 C
71 integer i
72 C
73 integer pas
74 save pas
75 data pas/0/
76 C
77 pas=pas+1
78 stops=0.
79 stopl=0.
80 ssols=0.
81 ssoll=0.
82 ssens=0.
83 sfront = 0.
84 evap_tot = 0.
85 rain_fall_tot = 0.
86 snow_fall_tot = 0.
87 airetot=0.
88 C
89 C Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de
90 C la glace, on travaille par difference a la chaleur specifique de l'
91 c air sec. En effet, comme on travaille a niveau de pression donne,
92 C toute variation de la masse d'un constituant est totalement
93 c compense par une variation de masse d'air.
94 C
95 zcpvap=RCPV-RCPD
96 zcwat=RCW-RCPD
97 zcice=RCS-RCPD
98 C
99 do i=1,klon
100 stops=stops+tops(i)*airephy(i)
101 stopl=stopl+topl(i)*airephy(i)
102 ssols=ssols+sols(i)*airephy(i)
103 ssoll=ssoll+soll(i)*airephy(i)
104 ssens=ssens+sens(i)*airephy(i)
105 sfront = sfront
106 $ + ( evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice
107 $ ) *ts(i) *airephy(i)
108 evap_tot = evap_tot + evap(i)*airephy(i)
109 rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i)
110 snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i)
111 airetot=airetot+airephy(i)
112 enddo
113 stops=stops/airetot
114 stopl=stopl/airetot
115 ssols=ssols/airetot
116 ssoll=ssoll/airetot
117 ssens=ssens/airetot
118 sfront = sfront/airetot
119 evap_tot = evap_tot /airetot
120 rain_fall_tot = rain_fall_tot/airetot
121 snow_fall_tot = snow_fall_tot/airetot
122 C
123 slat = RLVTT * rain_fall_tot + RLSTT * snow_fall_tot
124 C Heat flux at atm. boundaries
125 fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront
126 $ + slat
127 C Watter flux at atm. boundaries
128 fq_bound = evap_tot - rain_fall_tot -snow_fall_tot
129 C
130 IF (iprt.ge.1) write(6,6666)
131 $ tit, pas, fs_bound, d_etp_tot, fq_bound, d_qt_tot
132 C
133 IF (iprt.ge.1) write(6,6668)
134 $ tit, pas, d_etp_tot+d_ec_tot-fs_bound, d_qt_tot-fq_bound
135 C
136 IF (iprt.ge.2) write(6,6667)
137 $ tit, pas, stops,stopl,ssols,ssoll,ssens,slat,evap_tot
138 $ ,rain_fall_tot+snow_fall_tot
139
140 return
141
142 6666 format('Phys. Flux Budget ',a15,1i6,2f8.2,2(1pE13.5))
143 6667 format('Phys. Boundary Flux ',a15,1i6,6f8.2,2(1pE13.5))
144 6668 format('Phys. Total Budget ',a15,1i6,f8.2,2(1pE13.5))
145
146 end
147
148 C======================================================================
149 SUBROUTINE diagetpq(airephy,tit,iprt,idiag,idiag2,dtime
150 e ,t,q,ql,qs,u,v,paprs,pplay
151 s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec)
152 C======================================================================
153 C
154 C Purpose:
155 C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels,
156 C et calcul le flux de chaleur et le flux d'eau necessaire a ces
157 C changements. Ces valeurs sont moyennees sur la surface de tout
158 C le globe et sont exprime en W/2 et kg/s/m2
159 C Outil pour diagnostiquer la conservation de l'energie
160 C et de la masse dans la physique. Suppose que les niveau de
161 c pression entre couche ne varie pas entre 2 appels.
162 C
163 C Plusieurs de ces diagnostics peuvent etre fait en parallele: les
164 c bilans sont sauvegardes dans des tableaux indices. On parlera
165 C "d'indice de diagnostic"
166 c
167 C
168 c======================================================================
169 C Arguments:
170 C airephy-------input-R- grid area
171 C tit-----imput-A15- Comment added in PRINT (CHARACTER*15)
172 C iprt----input-I- PRINT level ( <=1 : no PRINT)
173 C idiag---input-I- indice dans lequel sera range les nouveaux
174 C bilans d' entalpie et de masse
175 C idiag2--input-I-les nouveaux bilans d'entalpie et de masse
176 C sont compare au bilan de d'enthalpie de masse de
177 C l'indice numero idiag2
178 C Cas parriculier : si idiag2=0, pas de comparaison, on
179 c sort directement les bilans d'enthalpie et de masse
180 C dtime----input-R- time step (s)
181 c t--------input-R- temperature (K)
182 c q--------input-R- vapeur d'eau (kg/kg)
183 c ql-------input-R- liquid watter (kg/kg)
184 c qs-------input-R- solid watter (kg/kg)
185 c u--------input-R- vitesse u
186 c v--------input-R- vitesse v
187 c paprs----input-R- pression a intercouche (Pa)
188 c pplay----input-R- pression au milieu de couche (Pa)
189 c
190 C the following total value are computed by UNIT of earth surface
191 C
192 C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy
193 c change (J/m2) during one time step (dtime) for the whole
194 C atmosphere (air, watter vapour, liquid and solid)
195 C d_qt------output-R- total water mass flux (kg/m2/s) defined as the
196 C total watter (kg/m2) change during one time step (dtime),
197 C d_qw------output-R- same, for the watter vapour only (kg/m2/s)
198 C d_ql------output-R- same, for the liquid watter only (kg/m2/s)
199 C d_qs------output-R- same, for the solid watter only (kg/m2/s)
200 C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column
201 C
202 C other (COMMON...)
203 C RCPD, RCPV, ....
204 C
205 C J.L. Dufresne, July 2002
206 c======================================================================
207
208 use dimens_m
209 use dimphy
210 use YOMCST
211 use yoethf
212 IMPLICIT NONE
213 C
214 C
215 c Input variables
216 real airephy(klon)
217 CHARACTER*15 tit
218 INTEGER iprt,idiag, idiag2
219 REAL, intent(in):: dtime
220 REAL t(klon,klev), q(klon,klev), ql(klon,klev), qs(klon,klev)
221 REAL u(klon,klev), v(klon,klev)
222 REAL, intent(in):: paprs(klon,klev+1)
223 real pplay(klon,klev)
224 c Output variables
225 REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec
226 C
227 C Local variables
228 c
229 REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot
230 . , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot
231 c h_vcol_tot-- total enthalpy of vertical air column
232 C (air with watter vapour, liquid and solid) (J/m2)
233 c h_dair_tot-- total enthalpy of dry air (J/m2)
234 c h_qw_tot---- total enthalpy of watter vapour (J/m2)
235 c h_ql_tot---- total enthalpy of liquid watter (J/m2)
236 c h_qs_tot---- total enthalpy of solid watter (J/m2)
237 c qw_tot------ total mass of watter vapour (kg/m2)
238 c ql_tot------ total mass of liquid watter (kg/m2)
239 c qs_tot------ total mass of solid watter (kg/m2)
240 c ec_tot------ total cinetic energy (kg/m2)
241 C
242 REAL zairm(klon,klev) ! layer air mass (kg/m2)
243 REAL zqw_col(klon)
244 REAL zql_col(klon)
245 REAL zqs_col(klon)
246 REAL zec_col(klon)
247 REAL zh_dair_col(klon)
248 REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon)
249 C
250 REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs
251 C
252 REAL airetot, zcpvap, zcwat, zcice
253 C
254 INTEGER i, k
255 C
256 INTEGER ndiag ! max number of diagnostic in parallel
257 PARAMETER (ndiag=10)
258 integer pas(ndiag)
259 save pas
260 data pas/ndiag*0/
261 C
262 REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag)
263 $ , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag)
264 $ , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag)
265 SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre
266 $ , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre
267
268 c======================================================================
269 C
270 DO k = 1, klev
271 DO i = 1, klon
272 C layer air mass
273 zairm(i,k) = (paprs(i,k)-paprs(i,k+1))/RG
274 ENDDO
275 END DO
276 C
277 C Reset variables
278 DO i = 1, klon
279 zqw_col(i)=0.
280 zql_col(i)=0.
281 zqs_col(i)=0.
282 zec_col(i) = 0.
283 zh_dair_col(i) = 0.
284 zh_qw_col(i) = 0.
285 zh_ql_col(i) = 0.
286 zh_qs_col(i) = 0.
287 ENDDO
288 C
289 zcpvap=RCPV
290 zcwat=RCW
291 zcice=RCS
292 C
293 C Compute vertical sum for each atmospheric column
294 C ================================================
295 DO k = 1, klev
296 DO i = 1, klon
297 C Watter mass
298 zqw_col(i) = zqw_col(i) + q(i,k)*zairm(i,k)
299 zql_col(i) = zql_col(i) + ql(i,k)*zairm(i,k)
300 zqs_col(i) = zqs_col(i) + qs(i,k)*zairm(i,k)
301 C Cinetic Energy
302 zec_col(i) = zec_col(i)
303 $ +0.5*(u(i,k)**2+v(i,k)**2)*zairm(i,k)
304 C Air enthalpy
305 zh_dair_col(i) = zh_dair_col(i)
306 $ + RCPD*(1.-q(i,k)-ql(i,k)-qs(i,k))*zairm(i,k)*t(i,k)
307 zh_qw_col(i) = zh_qw_col(i)
308 $ + zcpvap*q(i,k)*zairm(i,k)*t(i,k)
309 zh_ql_col(i) = zh_ql_col(i)
310 $ + zcwat*ql(i,k)*zairm(i,k)*t(i,k)
311 $ - RLVTT*ql(i,k)*zairm(i,k)
312 zh_qs_col(i) = zh_qs_col(i)
313 $ + zcice*qs(i,k)*zairm(i,k)*t(i,k)
314 $ - RLSTT*qs(i,k)*zairm(i,k)
315
316 END DO
317 ENDDO
318 C
319 C Mean over the planete surface
320 C =============================
321 qw_tot = 0.
322 ql_tot = 0.
323 qs_tot = 0.
324 ec_tot = 0.
325 h_vcol_tot = 0.
326 h_dair_tot = 0.
327 h_qw_tot = 0.
328 h_ql_tot = 0.
329 h_qs_tot = 0.
330 airetot=0.
331 C
332 do i=1,klon
333 qw_tot = qw_tot + zqw_col(i)*airephy(i)
334 ql_tot = ql_tot + zql_col(i)*airephy(i)
335 qs_tot = qs_tot + zqs_col(i)*airephy(i)
336 ec_tot = ec_tot + zec_col(i)*airephy(i)
337 h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i)
338 h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i)
339 h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i)
340 h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i)
341 airetot=airetot+airephy(i)
342 END DO
343 C
344 qw_tot = qw_tot/airetot
345 ql_tot = ql_tot/airetot
346 qs_tot = qs_tot/airetot
347 ec_tot = ec_tot/airetot
348 h_dair_tot = h_dair_tot/airetot
349 h_qw_tot = h_qw_tot/airetot
350 h_ql_tot = h_ql_tot/airetot
351 h_qs_tot = h_qs_tot/airetot
352 C
353 h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot
354 C
355 C Compute the change of the atmospheric state compare to the one
356 C stored in "idiag2", and convert it in flux. THis computation
357 C is performed IF idiag2 /= 0 and IF it is not the first CALL
358 c for "idiag"
359 C ===================================
360 C
361 IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN
362 d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime
363 d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime
364 d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime
365 d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime
366 d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime
367 d_qw = (qw_tot - qw_pre(idiag2) )/dtime
368 d_ql = (ql_tot - ql_pre(idiag2) )/dtime
369 d_qs = (qs_tot - qs_pre(idiag2) )/dtime
370 d_ec = (ec_tot - ec_pre(idiag2) )/dtime
371 d_qt = d_qw + d_ql + d_qs
372 ELSE
373 d_h_vcol = 0.
374 d_h_dair = 0.
375 d_h_qw = 0.
376 d_h_ql = 0.
377 d_h_qs = 0.
378 d_qw = 0.
379 d_ql = 0.
380 d_qs = 0.
381 d_ec = 0.
382 d_qt = 0.
383 ENDIF
384 C
385 IF (iprt.ge.2) THEN
386 WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs
387 9000 format('Phys. Watter Mass Budget (kg/m2/s)',A15
388 $ ,1i6,10(1pE14.6))
389 WRITE(6,9001) tit,pas(idiag), d_h_vcol
390 9001 format('Phys. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2))
391 WRITE(6,9002) tit,pas(idiag), d_ec
392 9002 format('Phys. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2))
393 END IF
394 C
395 C Store the new atmospheric state in "idiag"
396 C
397 pas(idiag)=pas(idiag)+1
398 h_vcol_pre(idiag) = h_vcol_tot
399 h_dair_pre(idiag) = h_dair_tot
400 h_qw_pre(idiag) = h_qw_tot
401 h_ql_pre(idiag) = h_ql_tot
402 h_qs_pre(idiag) = h_qs_tot
403 qw_pre(idiag) = qw_tot
404 ql_pre(idiag) = ql_tot
405 qs_pre(idiag) = qs_tot
406 ec_pre (idiag) = ec_tot
407 C
408 RETURN
409 END

  ViewVC Help
Powered by ViewVC 1.1.21