/[lmdze]/trunk/libf/phylmd/newmicro.f90
ViewVC logotype

Annotation of /trunk/libf/phylmd/newmicro.f90

Parent Directory Parent Directory | Revision Log Revision Log


Revision 10 - (hide annotations)
Fri Apr 18 14:45:53 2008 UTC (16 years ago) by guez
Original Path: trunk/libf/phylmd/newmicro.f
File size: 11827 byte(s)
Added NetCDF directory "/home/guez/include" in "g95.mk" and
"nag_tools.mk".

Added some "intent" attributes in "PVtheta", "advtrac", "caladvtrac",
"calfis", "diagedyn", "dissip", "vlspltqs", "aeropt", "ajsec",
"calltherm", "clmain", "cltrac", "cltracrn", "concvl", "conema3",
"conflx", "fisrtilp", "newmicro", "nuage", "diagcld1", "diagcld2",
"drag_noro", "lift_noro", "SUGWD", "physiq", "phytrac", "radlwsw", "thermcell".

Removed the case "ierr == 0" in "abort_gcm"; moved call to "histclo"
and messages for end of run from "abort_gcm" to "gcm"; replaced call
to "abort_gcm" in "leapfrog" by exit from outer loop.

In "calfis": removed argument "pp" and variable "unskap"; changed
"pksurcp" from scalar to rank 2; use "pressure_var"; rewrote
computation of "zplev", "zplay", "ztfi", "pcvgt" using "dyn_phy";
added computation of "pls".

Removed unused variable in "dynredem0".

In "exner_hyb": changed "dellta" from scalar to rank 1; replaced call
to "ssum" by call to "sum"; removed variables "xpn" and "xps";
replaced some loops by array expressions.

In "leapfrog": use "pressure_var"; deleted variables "p", "longcles".

Converted common blocks "YOECUMF", "YOEGWD" to modules.

Removed argument "pplay" in "cvltr", "diagetpq", "nflxtr".

Created module "raddimlw" from include file "raddimlw.h".

Corrected call to "new_unit" in "test_disvert".

1 guez 3 !
2     ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/newmicro.F,v 1.2 2004/06/03 09:22:43 lmdzadmin Exp $
3     !
4     SUBROUTINE newmicro (paprs, pplay,ok_newmicro,
5     . t, pqlwp, pclc, pcltau, pclemi,
6     . pch, pcl, pcm, pct, pctlwp,
7     s xflwp, xfiwp, xflwc, xfiwc,
8     e ok_aie,
9     e sulfate, sulfate_pi,
10     e bl95_b0, bl95_b1,
11     s cldtaupi, re, fl)
12     use dimens_m
13     use dimphy
14     use YOMCST
15     use nuagecom
16     IMPLICIT none
17     c======================================================================
18     c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910
19     c Objet: Calculer epaisseur optique et emmissivite des nuages
20     c======================================================================
21     c Arguments:
22     c t-------input-R-temperature
23     c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg)
24     c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1)
25     c
26     c ok_aie--input-L-apply aerosol indirect effect or not
27     c sulfate-input-R-sulfate aerosol mass concentration [um/m^3]
28     c sulfate_pi-input-R-dito, pre-industrial value
29     c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land)
30     c bl95_b1-input-R-a parameter, may be varied for tests ( -"- )
31     c
32     c cldtaupi-output-R-pre-industrial value of cloud optical thickness,
33     c needed for the diagnostics of the aerosol indirect
34     c radiative forcing (see radlwsw)
35     c re------output-R-Cloud droplet effective radius multiplied by fl [um]
36     c fl------output-R-Denominator to re, introduced to avoid problems in
37     c the averaging of the output. fl is the fraction of liquid
38     c water clouds within a grid cell
39     c pcltau--output-R-epaisseur optique des nuages
40     c pclemi--output-R-emissivite des nuages (0 a 1)
41     c======================================================================
42     C
43     c
44     REAL, intent(in):: paprs(klon,klev+1)
45 guez 10 real, intent(in):: pplay(klon,klev)
46 guez 3 REAL t(klon,klev)
47     c
48     REAL pclc(klon,klev)
49     REAL pqlwp(klon,klev)
50     REAL pcltau(klon,klev), pclemi(klon,klev)
51     c
52     REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon)
53     c
54     LOGICAL lo
55     c
56     REAL cetahb, cetamb
57     PARAMETER (cetahb = 0.45, cetamb = 0.80)
58     C
59     INTEGER i, k
60     cIM: 091003 REAL zflwp, zradef, zfice, zmsac
61     REAL zflwp(klon), zradef, zfice, zmsac
62     cIM: 091003 rajout
63     REAL xflwp(klon), xfiwp(klon)
64     REAL xflwc(klon,klev), xfiwc(klon,klev)
65     c
66     REAL radius, rad_chaud
67     cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0)
68     ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0)
69     c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0)
70     REAL coef, coef_froi, coef_chau
71     PARAMETER (coef_chau=0.13, coef_froi=0.09)
72     REAL seuil_neb, t_glace
73     PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0)
74     INTEGER nexpo ! exponentiel pour glace/eau
75     PARAMETER (nexpo=6)
76     ccc PARAMETER (nexpo=1)
77    
78     c -- sb:
79     logical ok_newmicro
80     c parameter (ok_newmicro=.FALSE.)
81     cIM: 091003 real rel, tc, rei, zfiwp
82     real rel, tc, rei, zfiwp(klon)
83     real k_liq, k_ice0, k_ice, DF
84     parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g
85     parameter (DF=1.66) ! diffusivity factor
86     c sb --
87     cjq for the aerosol indirect effect
88     cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003
89     cjq
90     LOGICAL ok_aie ! Apply AIE or not?
91     LOGICAL ok_a1lwpdep ! a1 LWP dependent?
92    
93     REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3]
94     REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3]
95     REAL re(klon, klev) ! cloud droplet effective radius [um]
96     REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value)
97     REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value)
98     REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value)
99    
100     REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell)
101    
102     REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula
103    
104     REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag
105     cjq-end
106     c
107     c Calculer l'epaisseur optique et l'emmissivite des nuages
108     c
109     cIM inversion des DO
110     DO i = 1, klon
111     xflwp(i)=0.
112     xfiwp(i)=0.
113     DO k = 1, klev
114     c
115     xflwc(i,k)=0.
116     xfiwc(i,k)=0.
117     c
118     rad_chaud = rad_chau1
119     IF (k.LE.3) rad_chaud = rad_chau2
120     pclc(i,k) = MAX(pclc(i,k), seuil_neb)
121     zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k)
122     . *(paprs(i,k)-paprs(i,k+1))
123     zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace)
124     zfice = MIN(MAX(zfice,0.0),1.0)
125     zfice = zfice**nexpo
126     radius = rad_chaud * (1.-zfice) + rad_froid * zfice
127     coef = coef_chau * (1.-zfice) + coef_froi * zfice
128     pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius
129     pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i))
130    
131     if (ok_newmicro) then
132    
133     c -- liquid/ice cloud water paths:
134    
135     zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace)
136     zfice = MIN(MAX(zfice,0.0),1.0)
137    
138     zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k)
139     : *(paprs(i,k)-paprs(i,k+1))/RG
140     zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k)
141     : *(paprs(i,k)-paprs(i,k+1))/RG
142    
143     xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k)
144     : *(paprs(i,k)-paprs(i,k+1))/RG
145     xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k)
146     : *(paprs(i,k)-paprs(i,k+1))/RG
147    
148     cIM Total Liquid/Ice water content
149     xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)
150     xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)
151     cIM In-Cloud Liquid/Ice water content
152     c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k)
153     c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k)
154    
155     c -- effective cloud droplet radius (microns):
156    
157     c for liquid water clouds:
158     IF (ok_aie) THEN
159     ! Formula "D" of Boucher and Lohmann, Tellus, 1995
160     !
161     cdnc(i,k) = 10.**(bl95_b0+bl95_b1*
162     . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3
163     ! Cloud droplet number concentration (CDNC) is restricted
164     ! to be within [20, 1000 cm^3]
165     !
166     cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k)))
167     !
168     !
169     cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1*
170     . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3
171     cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k)))
172     !
173     !
174     ! air density: pplay(i,k) / (RD * zT(i,k))
175     ! factor 1.1: derive effective radius from volume-mean radius
176     ! factor 1000 is the water density
177     ! _chaud means that this is the CDR for liquid water clouds
178     !
179     rad_chaud =
180     . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) )
181     . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.)
182     !
183     ! Convert to um. CDR shall be at least 3 um.
184     !
185     c rad_chaud = MAX(rad_chaud*1.e6, 3.)
186     rad_chaud = MAX(rad_chaud*1.e6, 5.)
187    
188     ! Pre-industrial cloud opt thickness
189     !
190     ! "radius" is calculated as rad_chaud above (plus the
191     ! ice cloud contribution) but using cdnc_pi instead of
192     ! cdnc.
193     radius =
194     . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) )
195     . / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.)
196     radius = MAX(radius*1.e6, 5.)
197    
198     tc = t(i,k)-273.15
199     rei = 0.71*tc + 61.29
200     if (tc.le.-81.4) rei = 3.5
201     if (zflwp(i).eq.0.) radius = 1.
202     if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1.
203     cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius
204     . + zfiwp(i) * (3.448e-03 + 2.431/rei)
205     ENDIF ! ok_aie
206     ! For output diagnostics
207     !
208     ! Cloud droplet effective radius [um]
209     !
210     ! we multiply here with f * xl (fraction of liquid water
211     ! clouds in the grid cell) to avoid problems in the
212     ! averaging of the output.
213     ! In the output of IOIPSL, derive the real cloud droplet
214     ! effective radius as re/fl
215     !
216     fl(i,k) = pclc(i,k)*(1.-zfice)
217     re(i,k) = rad_chaud*fl(i,k)
218    
219     c-jq end
220    
221     rel = rad_chaud
222     c for ice clouds: as a function of the ambiant temperature
223     c [formula used by Iacobellis and Somerville (2000), with an
224     c asymptotical value of 3.5 microns at T<-81.4 C added to be
225     c consistent with observations of Heymsfield et al. 1986]:
226     tc = t(i,k)-273.15
227     rei = 0.71*tc + 61.29
228     if (tc.le.-81.4) rei = 3.5
229    
230     c -- cloud optical thickness :
231    
232     c [for liquid clouds, traditional formula,
233     c for ice clouds, Ebert & Curry (1992)]
234    
235     if (zflwp(i).eq.0.) rel = 1.
236     if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1.
237     pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel )
238     . + zfiwp(i) * (3.448e-03 + 2.431/rei)
239    
240     c -- cloud infrared emissivity:
241    
242     c [the broadband infrared absorption coefficient is parameterized
243     c as a function of the effective cld droplet radius]
244    
245     c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995):
246     k_ice = k_ice0 + 1.0/rei
247    
248     pclemi(i,k) = 1.0
249     . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) )
250    
251     endif ! ok_newmicro
252    
253     lo = (pclc(i,k) .LE. seuil_neb)
254     IF (lo) pclc(i,k) = 0.0
255     IF (lo) pcltau(i,k) = 0.0
256     IF (lo) pclemi(i,k) = 0.0
257    
258     IF (lo) cldtaupi(i,k) = 0.0
259     IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k)
260     ENDDO
261     ENDDO
262     ccc DO k = 1, klev
263     ccc DO i = 1, klon
264     ccc t(i,k) = t(i,k)
265     ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) )
266     ccc lo = pclc(i,k) .GT. (2.*1.e-5)
267     ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1))
268     ccc . /(rg*pclc(i,k))
269     ccc zradef = 10.0 + (1.-sigs(k))*45.0
270     ccc pcltau(i,k) = 1.5 * zflwp / zradef
271     ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0)
272     ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice
273     ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp)
274     ccc if (.NOT.lo) pclc(i,k) = 0.0
275     ccc if (.NOT.lo) pcltau(i,k) = 0.0
276     ccc if (.NOT.lo) pclemi(i,k) = 0.0
277     ccc ENDDO
278     ccc ENDDO
279     cccccc print*, 'pas de nuage dans le rayonnement'
280     cccccc DO k = 1, klev
281     cccccc DO i = 1, klon
282     cccccc pclc(i,k) = 0.0
283     cccccc pcltau(i,k) = 0.0
284     cccccc pclemi(i,k) = 0.0
285     cccccc ENDDO
286     cccccc ENDDO
287     C
288     C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS
289     C
290     DO i = 1, klon
291     pct(i)=1.0
292     pch(i)=1.0
293     pcm(i) = 1.0
294     pcl(i) = 1.0
295     pctlwp(i) = 0.0
296     ENDDO
297     C
298     DO k = klev, 1, -1
299     DO i = 1, klon
300     pctlwp(i) = pctlwp(i)
301     . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG
302     pct(i) = pct(i)*(1.0-pclc(i,k))
303     if (pplay(i,k).LE.cetahb*paprs(i,1))
304     . pch(i) = pch(i)*(1.0-pclc(i,k))
305     if (pplay(i,k).GT.cetahb*paprs(i,1) .AND.
306     . pplay(i,k).LE.cetamb*paprs(i,1))
307     . pcm(i) = pcm(i)*(1.0-pclc(i,k))
308     if (pplay(i,k).GT.cetamb*paprs(i,1))
309     . pcl(i) = pcl(i)*(1.0-pclc(i,k))
310     ENDDO
311     ENDDO
312     C
313     DO i = 1, klon
314     pct(i)=1.-pct(i)
315     pch(i)=1.-pch(i)
316     pcm(i)=1.-pcm(i)
317     pcl(i)=1.-pcl(i)
318     ENDDO
319     C
320     RETURN
321     END

  ViewVC Help
Powered by ViewVC 1.1.21