--- trunk/libf/phylmd/newmicro.f90 2012/11/14 16:59:30 68 +++ trunk/libf/phylmd/newmicro.f90 2013/02/18 16:33:12 69 @@ -4,317 +4,236 @@ contains - SUBROUTINE newmicro (paprs, pplay,ok_newmicro, t, pqlwp, pclc, pcltau, & - pclemi, pch, pcl, pcm, pct, pctlwp, xflwp, xfiwp, xflwc, xfiwc, & - ok_aie, sulfate, sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl) + SUBROUTINE newmicro (paprs, play, t, qlwp, clc, cltau, clemi, cldh, & + cldl, cldm, cldt, ctlwp, flwp, fiwp, flwc, fiwc, ok_aie, sulfate, & + sulfate_pi, bl95_b0, bl95_b1, cldtaupi, re, fl) ! From LMDZ4/libf/phylmd/newmicro.F, version 1.2 2004/06/03 09:22:43 - use dimens_m - use dimphy - use SUPHEC_M - use nuagecom - !====================================================================== - ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 - ! Objet: Calculer epaisseur optique et emmissivite des nuages - !====================================================================== - ! Arguments: - ! t-------input-R-temperature - ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) - ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) - ! - ! ok_aie--input-L-apply aerosol indirect effect or not - ! sulfate-input-R-sulfate aerosol mass concentration [um/m^3] - ! sulfate_pi-input-R-dito, pre-industrial value - ! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) - ! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) - ! - ! cldtaupi-output-R-pre-industrial value of cloud optical thickness, - ! needed for the diagnostics of the aerosol indirect - ! radiative forcing (see radlwsw) - ! re------output-R-Cloud droplet effective radius multiplied by fl [um] - ! fl------output-R-Denominator to re, introduced to avoid problems in - ! the averaging of the output. fl is the fraction of liquid - ! water clouds within a grid cell - ! pcltau--output-R-epaisseur optique des nuages - ! pclemi--output-R-emissivite des nuages (0 a 1) - !====================================================================== - ! - ! - REAL, intent(in):: paprs(klon,klev+1) - real, intent(in):: pplay(klon,klev) - REAL, intent(in):: t(klon,klev) - ! - REAL pclc(klon,klev) - REAL pqlwp(klon,klev) - REAL pcltau(klon,klev), pclemi(klon,klev) - ! - REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) - ! - LOGICAL lo - ! - REAL cetahb, cetamb - PARAMETER (cetahb = 0.45, cetamb = 0.80) - ! + ! Authors: Z. X. Li (LMD/CNRS), Johannes Quaas + ! Date: 1993/09/10 + ! Objet: calcul de l'épaisseur optique et de l'émissivité des nuages. + + USE conf_phys_m, ONLY: rad_chau1, rad_chau2 + USE dimphy, ONLY: klev, klon + USE suphec_m, ONLY: rd, rg + use nr_util, only: pi + + REAL, intent(in):: paprs(:, :) ! (klon, klev+1) + real, intent(in):: play(:, :) ! (klon, klev) + REAL, intent(in):: t(:, :) ! (klon, klev) temperature + + REAL, intent(in):: qlwp(:, :) ! (klon, klev) + ! eau liquide nuageuse dans l'atmosphère (kg/kg) + + REAL, intent(inout):: clc(:, :) ! (klon, klev) + ! couverture nuageuse pour le rayonnement (0 à 1) + + REAL, intent(out):: cltau(:, :) ! (klon, klev) épaisseur optique des nuages + REAL, intent(out):: clemi(:, :) ! (klon, klev) émissivité des nuages (0 à 1) + + REAL, intent(out):: cldh(:), cldl(:), cldm(:), cldt(:) ! (klon) + REAL, intent(out):: ctlwp(:) ! (klon) + REAL, intent(out):: flwp(:), fiwp(:) ! (klon) + REAL, intent(out):: flwc(:, :), fiwc(:, :) ! (klon, klev) + LOGICAL, intent(in):: ok_aie ! apply aerosol indirect effect + + REAL, intent(in):: sulfate(:, :) ! (klon, klev) + ! sulfate aerosol mass concentration (micro g m-3) + + REAL, intent(in):: sulfate_pi(:, :) ! (klon, klev) + ! sulfate aerosol mass concentration (micro g m-3), pre-industrial value + + REAL, intent(in):: bl95_b0, bl95_b1 + ! Parameters in equation (D) of Boucher and Lohmann (1995, Tellus + ! B). They link cloud droplet number concentration to aerosol mass + ! concentration. + + REAL, intent(out):: cldtaupi(:, :) ! (klon, klev) + ! pre-industrial value of cloud optical thickness, needed for the + ! diagnosis of the aerosol indirect radiative forcing (see + ! radlwsw) + + REAL, intent(out):: re(:, :) ! (klon, klev) + ! cloud droplet effective radius multiplied by fl (micro m) + + REAL, intent(out):: fl(:, :) ! (klon, klev) + ! Denominator to re, introduced to avoid problems in the averaging + ! of the output. fl is the fraction of liquid water clouds within + ! a grid cell. + + ! Local: + + REAL, PARAMETER:: cetahb = 0.45, cetamb = 0.8 INTEGER i, k - !IM: 091003 REAL zflwp, zradef, zfice, zmsac - REAL zflwp(klon), zradef, zfice, zmsac - !IM: 091003 rajout - REAL xflwp(klon), xfiwp(klon) - REAL xflwc(klon,klev), xfiwc(klon,klev) - ! + REAL zflwp(klon), fice REAL radius, rad_chaud - !c PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) - !cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) - ! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) - REAL coef, coef_froi, coef_chau - PARAMETER (coef_chau=0.13, coef_froi=0.09) - REAL seuil_neb, t_glace - PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) - INTEGER nexpo ! exponentiel pour glace/eau - PARAMETER (nexpo=6) - !cc PARAMETER (nexpo=1) - - ! -- sb: - logical ok_newmicro - ! parameter (ok_newmicro=.FALSE.) - !IM: 091003 real rel, tc, rei, zfiwp + REAL, PARAMETER:: coef_chau = 0.13 + REAL, PARAMETER:: seuil_neb = 0.001, t_glace = 273. - 15. real rel, tc, rei, zfiwp(klon) - real k_liq, k_ice0, k_ice, DF - parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g - parameter (DF=1.66) ! diffusivity factor - ! sb -- - !jq for the aerosol indirect effect - !jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 - !jq - LOGICAL ok_aie ! Apply AIE or not? - LOGICAL ok_a1lwpdep ! a1 LWP dependent? - - REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] - REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] - REAL re(klon, klev) ! cloud droplet effective radius [um] - REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) - REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) - REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) - - REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) - - REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula - - REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag - !jq-end - ! - ! Calculer l'epaisseur optique et l'emmissivite des nuages - ! - !IM inversion des DO - DO i = 1, klon - xflwp(i)=0. - xfiwp(i)=0. + real k_ice + real, parameter:: k_ice0 = 0.005 ! units=m2/g + real, parameter:: DF = 1.66 ! diffusivity factor + REAL cdnc(klon, klev) ! cloud droplet number concentration (m-3) + + REAL cdnc_pi(klon, klev) + ! cloud droplet number concentration, pre-industrial value (m-3) + + !----------------------------------------------------------------- + + ! Calculer l'épaisseur optique et l'émissivité des nuages + + loop_horizontal: DO i = 1, klon + flwp(i) = 0. + fiwp(i) = 0. + DO k = 1, klev - ! - xflwc(i,k)=0. - xfiwc(i,k)=0. - ! - rad_chaud = rad_chau1 - IF (k.LE.3) rad_chaud = rad_chau2 - pclc(i,k) = MAX(pclc(i,k), seuil_neb) - zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) & - *(paprs(i,k)-paprs(i,k+1)) - zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) - zfice = MIN(MAX(zfice,0.0),1.0) - zfice = zfice**nexpo - radius = rad_chaud * (1.-zfice) + rad_froid * zfice - coef = coef_chau * (1.-zfice) + coef_froi * zfice - pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius - pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) - - if (ok_newmicro) then - - ! -- liquid/ice cloud water paths: - - zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) - zfice = MIN(MAX(zfice,0.0),1.0) - - zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) & - *(paprs(i,k)-paprs(i,k+1))/RG - zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) & - *(paprs(i,k)-paprs(i,k+1))/RG - - xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) & - *(paprs(i,k)-paprs(i,k+1))/RG - xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) & - *(paprs(i,k)-paprs(i,k+1))/RG - - !IM Total Liquid/Ice water content - xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) - xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) - !IM In-Cloud Liquid/Ice water content - ! xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) - ! xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) - - ! -- effective cloud droplet radius (microns): - - ! for liquid water clouds: - IF (ok_aie) THEN - ! Formula "D" of Boucher and Lohmann, Tellus, 1995 - ! - cdnc(i,k) = 10.**(bl95_b0+bl95_b1* & - log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 - ! Cloud droplet number concentration (CDNC) is restricted - ! to be within [20, 1000 cm^3] - ! - cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) - ! - ! - cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* & - log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 - cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) - ! - ! - ! air density: pplay(i,k) / (RD * zT(i,k)) - ! factor 1.1: derive effective radius from volume-mean radius - ! factor 1000 is the water density - ! _chaud means that this is the CDR for liquid water clouds - ! - rad_chaud = & - 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) & - / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) - ! - ! Convert to um. CDR shall be at least 3 um. - ! - ! rad_chaud = MAX(rad_chaud*1.e6, 3.) - rad_chaud = MAX(rad_chaud*1.e6, 5.) - - ! Pre-industrial cloud opt thickness - ! - ! "radius" is calculated as rad_chaud above (plus the - ! ice cloud contribution) but using cdnc_pi instead of - ! cdnc. - radius = & - 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) & - / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) - radius = MAX(radius*1.e6, 5.) - - tc = t(i,k)-273.15 - rei = 0.71*tc + 61.29 - if (tc.le.-81.4) rei = 3.5 - if (zflwp(i).eq.0.) radius = 1. - if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. - cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius & - + zfiwp(i) * (3.448e-03 + 2.431/rei) - ENDIF ! ok_aie - ! For output diagnostics - ! - ! Cloud droplet effective radius [um] - ! - ! we multiply here with f * xl (fraction of liquid water - ! clouds in the grid cell) to avoid problems in the - ! averaging of the output. - ! In the output of IOIPSL, derive the real cloud droplet - ! effective radius as re/fl - ! - fl(i,k) = pclc(i,k)*(1.-zfice) - re(i,k) = rad_chaud*fl(i,k) - - !-jq end - - rel = rad_chaud - ! for ice clouds: as a function of the ambiant temperature - ! [formula used by Iacobellis and Somerville (2000), with an - ! asymptotical value of 3.5 microns at T<-81.4 C added to be - ! consistent with observations of Heymsfield et al. 1986]: - tc = t(i,k)-273.15 - rei = 0.71*tc + 61.29 - if (tc.le.-81.4) rei = 3.5 - - ! -- cloud optical thickness : - - ! [for liquid clouds, traditional formula, - ! for ice clouds, Ebert & Curry (1992)] - - if (zflwp(i).eq.0.) rel = 1. - if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. - pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) & - + zfiwp(i) * (3.448e-03 + 2.431/rei) - - ! -- cloud infrared emissivity: - - ! [the broadband infrared absorption coefficient is parameterized - ! as a function of the effective cld droplet radius] - - ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): - k_ice = k_ice0 + 1.0/rei - - pclemi(i,k) = 1.0 & - - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) - - endif ! ok_newmicro - - lo = (pclc(i,k) .LE. seuil_neb) - IF (lo) pclc(i,k) = 0.0 - IF (lo) pcltau(i,k) = 0.0 - IF (lo) pclemi(i,k) = 0.0 + clc(i, k) = MAX(clc(i, k), seuil_neb) + + ! liquid/ice cloud water paths: - IF (lo) cldtaupi(i,k) = 0.0 - IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) + fice = 1. - (t(i, k) - t_glace) / (273.13 - t_glace) + fice = MIN(MAX(fice, 0.), 1.) + + zflwp(i) = 1000. * (1. - fice) * qlwp(i, k) / clc(i, k) & + * (paprs(i, k) - paprs(i, k + 1)) / RG + zfiwp(i) = 1000. * fice * qlwp(i, k) / clc(i, k) & + * (paprs(i, k) - paprs(i, k + 1)) / RG + + flwp(i) = flwp(i) & + + (1. - fice) * qlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / RG + fiwp(i) = fiwp(i) & + + fice * qlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / RG + + ! Total Liquid/Ice water content + flwc(i, k) = (1.-fice) * qlwp(i, k) + fiwc(i, k) = fice * qlwp(i, k) + ! In-Cloud Liquid/Ice water content + + ! effective cloud droplet radius (microns): + + ! for liquid water clouds: + IF (ok_aie) THEN + cdnc(i, k) = 10.**(bl95_b0 + bl95_b1 & + * log10(MAX(sulfate(i, k), 1e-4))) * 1.e6 + cdnc_pi(i, k) = 10.**(bl95_b0 + bl95_b1 & + * log10(MAX(sulfate_pi(i, k), 1e-4))) * 1e6 + + ! Restrict to interval [20, 1000] cm^3: + cdnc(i, k) = MIN(1000e6, MAX(20e6, cdnc(i, k))) + cdnc_pi(i, k) = MIN(1000e6, MAX(20e6, cdnc_pi(i, k))) + + ! air density: play(i, k) / (RD * T(i, k)) + ! factor 1.1: derive effective radius from volume-mean radius + ! factor 1000 is the water density + ! "_chaud" means that this is the CDR for liquid water clouds + + rad_chaud = 1.1 * ((qlwp(i, k) * play(i, k) / (RD * T(i, k))) & + / (4./3. * PI * 1000. * cdnc(i, k)))**(1./3.) + + ! Convert to micro m and set a lower limit: + rad_chaud = MAX(rad_chaud * 1e6, 5.) + + ! Pre-industrial cloud optical thickness + + ! "radius" is calculated as rad_chaud above (plus the + ! ice cloud contribution) but using cdnc_pi instead of + ! cdnc. + radius = 1.1 * ((qlwp(i, k) * play(i, k) / (RD * T(i, k))) & + / (4./3. * PI * 1000. * cdnc_pi(i, k)))**(1./3.) + radius = MAX(radius * 1e6, 5.) + + tc = t(i, k)-273.15 + rei = merge(3.5, 0.71 * tc + 61.29, tc <= -81.4) + if (zflwp(i) == 0.) radius = 1. + if (zfiwp(i) == 0. .or. rei <= 0.) rei = 1. + cldtaupi(i, k) = 3. / 2. * zflwp(i) / radius & + + zfiwp(i) * (3.448e-03 + 2.431 / rei) + else + rad_chaud = merge(rad_chau2, rad_chau1, k <= 3) + ENDIF + ! For output diagnostics + + ! Cloud droplet effective radius (micro m) + + ! we multiply here with f * xl (fraction of liquid water + ! clouds in the grid cell) to avoid problems in the + ! averaging of the output. + ! In the output of IOIPSL, derive the real cloud droplet + ! effective radius as re/fl + + fl(i, k) = clc(i, k) * (1.-fice) + re(i, k) = rad_chaud * fl(i, k) + + rel = rad_chaud + ! for ice clouds: as a function of the ambiant temperature + ! (formula used by Iacobellis and Somerville (2000), with an + ! asymptotical value of 3.5 microns at T<-81.4 C added to be + ! consistent with observations of Heymsfield et al. 1986): + tc = t(i, k)-273.15 + rei = merge(3.5, 0.71 * tc + 61.29, tc <= -81.4) + + ! cloud optical thickness: + + ! (for liquid clouds, traditional formula, + ! for ice clouds, Ebert & Curry (1992)) + + if (zflwp(i) == 0.) rel = 1. + if (zfiwp(i) == 0. .or. rei <= 0.) rei = 1. + cltau(i, k) = 3./2. * (zflwp(i)/rel) & + + zfiwp(i) * (3.448e-03 + 2.431/rei) + + ! cloud infrared emissivity: + + ! (the broadband infrared absorption coefficient is parameterized + ! as a function of the effective cld droplet radius) + + ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): + k_ice = k_ice0 + 1. / rei + + clemi(i, k) = 1. - EXP(- coef_chau * zflwp(i) - DF * k_ice * zfiwp(i)) + + if (clc(i, k) <= seuil_neb) then + clc(i, k) = 0. + cltau(i, k) = 0. + clemi(i, k) = 0. + cldtaupi(i, k) = 0. + end if + + IF (.NOT. ok_aie) cldtaupi(i, k) = cltau(i, k) ENDDO - ENDDO - !cc DO k = 1, klev - !cc DO i = 1, klon - !cc t(i,k) = t(i,k) - !cc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) - !cc lo = pclc(i,k) .GT. (2.*1.e-5) - !cc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) - !cc . /(rg*pclc(i,k)) - !cc zradef = 10.0 + (1.-sigs(k))*45.0 - !cc pcltau(i,k) = 1.5 * zflwp / zradef - !cc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) - !cc zmsac = 0.13*(1.0-zfice) + 0.08*zfice - !cc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) - !cc if (.NOT.lo) pclc(i,k) = 0.0 - !cc if (.NOT.lo) pcltau(i,k) = 0.0 - !cc if (.NOT.lo) pclemi(i,k) = 0.0 - !cc ENDDO - !cc ENDDO - !ccccc print*, 'pas de nuage dans le rayonnement' - !ccccc DO k = 1, klev - !ccccc DO i = 1, klon - !ccccc pclc(i,k) = 0.0 - !ccccc pcltau(i,k) = 0.0 - !ccccc pclemi(i,k) = 0.0 - !ccccc ENDDO - !ccccc ENDDO - ! + ENDDO loop_horizontal + ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS - ! + DO i = 1, klon - pct(i)=1.0 - pch(i)=1.0 - pcm(i) = 1.0 - pcl(i) = 1.0 - pctlwp(i) = 0.0 + cldt(i)=1. + cldh(i)=1. + cldm(i) = 1. + cldl(i) = 1. + ctlwp(i) = 0. ENDDO - ! + DO k = klev, 1, -1 DO i = 1, klon - pctlwp(i) = pctlwp(i) & - + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG - pct(i) = pct(i)*(1.0-pclc(i,k)) - if (pplay(i,k).LE.cetahb*paprs(i,1)) & - pch(i) = pch(i)*(1.0-pclc(i,k)) - if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. & - pplay(i,k).LE.cetamb*paprs(i,1)) & - pcm(i) = pcm(i)*(1.0-pclc(i,k)) - if (pplay(i,k).GT.cetamb*paprs(i,1)) & - pcl(i) = pcl(i)*(1.0-pclc(i,k)) + ctlwp(i) = ctlwp(i) & + + qlwp(i, k) * (paprs(i, k) - paprs(i, k + 1)) / RG + cldt(i) = cldt(i) * (1.-clc(i, k)) + if (play(i, k) <= cetahb * paprs(i, 1)) & + cldh(i) = cldh(i) * (1. - clc(i, k)) + if (play(i, k) > cetahb * paprs(i, 1) .AND. & + play(i, k) <= cetamb * paprs(i, 1)) & + cldm(i) = cldm(i) * (1.-clc(i, k)) + if (play(i, k) > cetamb * paprs(i, 1)) & + cldl(i) = cldl(i) * (1. - clc(i, k)) ENDDO ENDDO - ! + DO i = 1, klon - pct(i)=1.-pct(i) - pch(i)=1.-pch(i) - pcm(i)=1.-pcm(i) - pcl(i)=1.-pcl(i) + cldt(i)=1.-cldt(i) + cldh(i)=1.-cldh(i) + cldm(i)=1.-cldm(i) + cldl(i)=1.-cldl(i) ENDDO END SUBROUTINE newmicro