--- trunk/libf/phylmd/newmicro.f 2011/09/20 09:14:34 51 +++ trunk/libf/phylmd/newmicro.f90 2011/09/23 12:28:01 52 @@ -1,321 +1,320 @@ -! -! $Header: /home/cvsroot/LMDZ4/libf/phylmd/newmicro.F,v 1.2 2004/06/03 09:22:43 lmdzadmin Exp $ -! - SUBROUTINE newmicro (paprs, pplay,ok_newmicro, - . t, pqlwp, pclc, pcltau, pclemi, - . pch, pcl, pcm, pct, pctlwp, - s xflwp, xfiwp, xflwc, xfiwc, - e ok_aie, - e sulfate, sulfate_pi, - e bl95_b0, bl95_b1, - s cldtaupi, re, fl) - use dimens_m - use dimphy - use SUPHEC_M - use nuagecom - IMPLICIT none -c====================================================================== -c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 -c Objet: Calculer epaisseur optique et emmissivite des nuages -c====================================================================== -c Arguments: -c t-------input-R-temperature -c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) -c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) -c -c ok_aie--input-L-apply aerosol indirect effect or not -c sulfate-input-R-sulfate aerosol mass concentration [um/m^3] -c sulfate_pi-input-R-dito, pre-industrial value -c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) -c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) -c -c cldtaupi-output-R-pre-industrial value of cloud optical thickness, -c needed for the diagnostics of the aerosol indirect -c radiative forcing (see radlwsw) -c re------output-R-Cloud droplet effective radius multiplied by fl [um] -c fl------output-R-Denominator to re, introduced to avoid problems in -c the averaging of the output. fl is the fraction of liquid -c water clouds within a grid cell -c pcltau--output-R-epaisseur optique des nuages -c pclemi--output-R-emissivite des nuages (0 a 1) -c====================================================================== -C -c - REAL, intent(in):: paprs(klon,klev+1) - real, intent(in):: pplay(klon,klev) - REAL t(klon,klev) -c - REAL pclc(klon,klev) - REAL pqlwp(klon,klev) - REAL pcltau(klon,klev), pclemi(klon,klev) -c - REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) -c - LOGICAL lo -c - REAL cetahb, cetamb - PARAMETER (cetahb = 0.45, cetamb = 0.80) -C - INTEGER i, k -cIM: 091003 REAL zflwp, zradef, zfice, zmsac - REAL zflwp(klon), zradef, zfice, zmsac -cIM: 091003 rajout - REAL xflwp(klon), xfiwp(klon) - REAL xflwc(klon,klev), xfiwc(klon,klev) -c - REAL radius, rad_chaud -cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) -ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) -c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) - REAL coef, coef_froi, coef_chau - PARAMETER (coef_chau=0.13, coef_froi=0.09) - REAL seuil_neb, t_glace - PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) - INTEGER nexpo ! exponentiel pour glace/eau - PARAMETER (nexpo=6) -ccc PARAMETER (nexpo=1) - -c -- sb: - logical ok_newmicro -c parameter (ok_newmicro=.FALSE.) -cIM: 091003 real rel, tc, rei, zfiwp - real rel, tc, rei, zfiwp(klon) - real k_liq, k_ice0, k_ice, DF - parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g - parameter (DF=1.66) ! diffusivity factor -c sb -- -cjq for the aerosol indirect effect -cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 -cjq - LOGICAL ok_aie ! Apply AIE or not? - LOGICAL ok_a1lwpdep ! a1 LWP dependent? - - REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] - REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] - REAL re(klon, klev) ! cloud droplet effective radius [um] - REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) - REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) - REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) - - REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) - - REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula - - REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag -cjq-end -c -c Calculer l'epaisseur optique et l'emmissivite des nuages -c -cIM inversion des DO - DO i = 1, klon - xflwp(i)=0. - xfiwp(i)=0. - DO k = 1, klev -c - xflwc(i,k)=0. - xfiwc(i,k)=0. -c - rad_chaud = rad_chau1 - IF (k.LE.3) rad_chaud = rad_chau2 - pclc(i,k) = MAX(pclc(i,k), seuil_neb) - zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) - . *(paprs(i,k)-paprs(i,k+1)) - zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) - zfice = MIN(MAX(zfice,0.0),1.0) - zfice = zfice**nexpo - radius = rad_chaud * (1.-zfice) + rad_froid * zfice - coef = coef_chau * (1.-zfice) + coef_froi * zfice - pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius - pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) - - if (ok_newmicro) then - -c -- liquid/ice cloud water paths: - - zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) - zfice = MIN(MAX(zfice,0.0),1.0) - - zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) - : *(paprs(i,k)-paprs(i,k+1))/RG - zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) - : *(paprs(i,k)-paprs(i,k+1))/RG - - xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) - : *(paprs(i,k)-paprs(i,k+1))/RG - xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) - : *(paprs(i,k)-paprs(i,k+1))/RG - -cIM Total Liquid/Ice water content - xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) - xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) -cIM In-Cloud Liquid/Ice water content -c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) -c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) - -c -- effective cloud droplet radius (microns): - -c for liquid water clouds: - IF (ok_aie) THEN - ! Formula "D" of Boucher and Lohmann, Tellus, 1995 - ! - cdnc(i,k) = 10.**(bl95_b0+bl95_b1* - . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 - ! Cloud droplet number concentration (CDNC) is restricted - ! to be within [20, 1000 cm^3] - ! - cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) - ! - ! - cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* - . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 - cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) - ! - ! - ! air density: pplay(i,k) / (RD * zT(i,k)) - ! factor 1.1: derive effective radius from volume-mean radius - ! factor 1000 is the water density - ! _chaud means that this is the CDR for liquid water clouds - ! - rad_chaud = - . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) - . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) - ! - ! Convert to um. CDR shall be at least 3 um. - ! -c rad_chaud = MAX(rad_chaud*1.e6, 3.) - rad_chaud = MAX(rad_chaud*1.e6, 5.) - - ! Pre-industrial cloud opt thickness - ! - ! "radius" is calculated as rad_chaud above (plus the - ! ice cloud contribution) but using cdnc_pi instead of - ! cdnc. - radius = - . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) - . / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) - radius = MAX(radius*1.e6, 5.) - - tc = t(i,k)-273.15 - rei = 0.71*tc + 61.29 - if (tc.le.-81.4) rei = 3.5 - if (zflwp(i).eq.0.) radius = 1. - if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. - cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius - . + zfiwp(i) * (3.448e-03 + 2.431/rei) - ENDIF ! ok_aie - ! For output diagnostics - ! - ! Cloud droplet effective radius [um] - ! - ! we multiply here with f * xl (fraction of liquid water - ! clouds in the grid cell) to avoid problems in the - ! averaging of the output. - ! In the output of IOIPSL, derive the real cloud droplet - ! effective radius as re/fl - ! - fl(i,k) = pclc(i,k)*(1.-zfice) - re(i,k) = rad_chaud*fl(i,k) - -c-jq end - - rel = rad_chaud -c for ice clouds: as a function of the ambiant temperature -c [formula used by Iacobellis and Somerville (2000), with an -c asymptotical value of 3.5 microns at T<-81.4 C added to be -c consistent with observations of Heymsfield et al. 1986]: - tc = t(i,k)-273.15 - rei = 0.71*tc + 61.29 - if (tc.le.-81.4) rei = 3.5 - -c -- cloud optical thickness : - -c [for liquid clouds, traditional formula, -c for ice clouds, Ebert & Curry (1992)] - - if (zflwp(i).eq.0.) rel = 1. - if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. - pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) - . + zfiwp(i) * (3.448e-03 + 2.431/rei) - -c -- cloud infrared emissivity: - -c [the broadband infrared absorption coefficient is parameterized -c as a function of the effective cld droplet radius] - -c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): - k_ice = k_ice0 + 1.0/rei - - pclemi(i,k) = 1.0 - . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) - - endif ! ok_newmicro - - lo = (pclc(i,k) .LE. seuil_neb) - IF (lo) pclc(i,k) = 0.0 - IF (lo) pcltau(i,k) = 0.0 - IF (lo) pclemi(i,k) = 0.0 - - IF (lo) cldtaupi(i,k) = 0.0 - IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) - ENDDO - ENDDO -ccc DO k = 1, klev -ccc DO i = 1, klon -ccc t(i,k) = t(i,k) -ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) -ccc lo = pclc(i,k) .GT. (2.*1.e-5) -ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) -ccc . /(rg*pclc(i,k)) -ccc zradef = 10.0 + (1.-sigs(k))*45.0 -ccc pcltau(i,k) = 1.5 * zflwp / zradef -ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) -ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice -ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) -ccc if (.NOT.lo) pclc(i,k) = 0.0 -ccc if (.NOT.lo) pcltau(i,k) = 0.0 -ccc if (.NOT.lo) pclemi(i,k) = 0.0 -ccc ENDDO -ccc ENDDO -cccccc print*, 'pas de nuage dans le rayonnement' -cccccc DO k = 1, klev -cccccc DO i = 1, klon -cccccc pclc(i,k) = 0.0 -cccccc pcltau(i,k) = 0.0 -cccccc pclemi(i,k) = 0.0 -cccccc ENDDO -cccccc ENDDO -C -C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS -C - DO i = 1, klon - pct(i)=1.0 - pch(i)=1.0 - pcm(i) = 1.0 - pcl(i) = 1.0 - pctlwp(i) = 0.0 - ENDDO -C - DO k = klev, 1, -1 - DO i = 1, klon - pctlwp(i) = pctlwp(i) - . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG - pct(i) = pct(i)*(1.0-pclc(i,k)) - if (pplay(i,k).LE.cetahb*paprs(i,1)) - . pch(i) = pch(i)*(1.0-pclc(i,k)) - if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. - . pplay(i,k).LE.cetamb*paprs(i,1)) - . pcm(i) = pcm(i)*(1.0-pclc(i,k)) - if (pplay(i,k).GT.cetamb*paprs(i,1)) - . pcl(i) = pcl(i)*(1.0-pclc(i,k)) - ENDDO - ENDDO -C - DO i = 1, klon - pct(i)=1.-pct(i) - pch(i)=1.-pch(i) - pcm(i)=1.-pcm(i) - pcl(i)=1.-pcl(i) - ENDDO -C - RETURN - END +SUBROUTINE newmicro (paprs, pplay,ok_newmicro, & + t, pqlwp, pclc, pcltau, pclemi, & + pch, pcl, pcm, pct, pctlwp, & + xflwp, xfiwp, xflwc, xfiwc, & + ok_aie, & + sulfate, sulfate_pi, & + bl95_b0, bl95_b1, & + cldtaupi, re, fl) + + ! From LMDZ4/libf/phylmd/newmicro.F,v 1.2 2004/06/03 09:22:43 + + use dimens_m + use dimphy + use SUPHEC_M + use nuagecom + IMPLICIT none + !====================================================================== + ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 + ! Objet: Calculer epaisseur optique et emmissivite des nuages + !====================================================================== + ! Arguments: + ! t-------input-R-temperature + ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) + ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) + ! + ! ok_aie--input-L-apply aerosol indirect effect or not + ! sulfate-input-R-sulfate aerosol mass concentration [um/m^3] + ! sulfate_pi-input-R-dito, pre-industrial value + ! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) + ! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) + ! + ! cldtaupi-output-R-pre-industrial value of cloud optical thickness, + ! needed for the diagnostics of the aerosol indirect + ! radiative forcing (see radlwsw) + ! re------output-R-Cloud droplet effective radius multiplied by fl [um] + ! fl------output-R-Denominator to re, introduced to avoid problems in + ! the averaging of the output. fl is the fraction of liquid + ! water clouds within a grid cell + ! pcltau--output-R-epaisseur optique des nuages + ! pclemi--output-R-emissivite des nuages (0 a 1) + !====================================================================== + ! + ! + REAL, intent(in):: paprs(klon,klev+1) + real, intent(in):: pplay(klon,klev) + REAL, intent(in):: t(klon,klev) + ! + REAL pclc(klon,klev) + REAL pqlwp(klon,klev) + REAL pcltau(klon,klev), pclemi(klon,klev) + ! + REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) + ! + LOGICAL lo + ! + REAL cetahb, cetamb + PARAMETER (cetahb = 0.45, cetamb = 0.80) + ! + INTEGER i, k + !IM: 091003 REAL zflwp, zradef, zfice, zmsac + REAL zflwp(klon), zradef, zfice, zmsac + !IM: 091003 rajout + REAL xflwp(klon), xfiwp(klon) + REAL xflwc(klon,klev), xfiwc(klon,klev) + ! + REAL radius, rad_chaud + !c PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) + !cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) + ! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) + REAL coef, coef_froi, coef_chau + PARAMETER (coef_chau=0.13, coef_froi=0.09) + REAL seuil_neb, t_glace + PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) + INTEGER nexpo ! exponentiel pour glace/eau + PARAMETER (nexpo=6) + !cc PARAMETER (nexpo=1) + + ! -- sb: + logical ok_newmicro + ! parameter (ok_newmicro=.FALSE.) + !IM: 091003 real rel, tc, rei, zfiwp + real rel, tc, rei, zfiwp(klon) + real k_liq, k_ice0, k_ice, DF + parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g + parameter (DF=1.66) ! diffusivity factor + ! sb -- + !jq for the aerosol indirect effect + !jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 + !jq + LOGICAL ok_aie ! Apply AIE or not? + LOGICAL ok_a1lwpdep ! a1 LWP dependent? + + REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] + REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] + REAL re(klon, klev) ! cloud droplet effective radius [um] + REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) + REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) + REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) + + REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) + + REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula + + REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag + !jq-end + ! + ! Calculer l'epaisseur optique et l'emmissivite des nuages + ! + !IM inversion des DO + DO i = 1, klon + xflwp(i)=0. + xfiwp(i)=0. + DO k = 1, klev + ! + xflwc(i,k)=0. + xfiwc(i,k)=0. + ! + rad_chaud = rad_chau1 + IF (k.LE.3) rad_chaud = rad_chau2 + pclc(i,k) = MAX(pclc(i,k), seuil_neb) + zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) & + *(paprs(i,k)-paprs(i,k+1)) + zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) + zfice = MIN(MAX(zfice,0.0),1.0) + zfice = zfice**nexpo + radius = rad_chaud * (1.-zfice) + rad_froid * zfice + coef = coef_chau * (1.-zfice) + coef_froi * zfice + pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius + pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) + + if (ok_newmicro) then + + ! -- liquid/ice cloud water paths: + + zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) + zfice = MIN(MAX(zfice,0.0),1.0) + + zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) & + *(paprs(i,k)-paprs(i,k+1))/RG + zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) & + *(paprs(i,k)-paprs(i,k+1))/RG + + xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) & + *(paprs(i,k)-paprs(i,k+1))/RG + xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) & + *(paprs(i,k)-paprs(i,k+1))/RG + + !IM Total Liquid/Ice water content + xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) + xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) + !IM In-Cloud Liquid/Ice water content + ! xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) + ! xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) + + ! -- effective cloud droplet radius (microns): + + ! for liquid water clouds: + IF (ok_aie) THEN + ! Formula "D" of Boucher and Lohmann, Tellus, 1995 + ! + cdnc(i,k) = 10.**(bl95_b0+bl95_b1* & + log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 + ! Cloud droplet number concentration (CDNC) is restricted + ! to be within [20, 1000 cm^3] + ! + cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) + ! + ! + cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* & + log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 + cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) + ! + ! + ! air density: pplay(i,k) / (RD * zT(i,k)) + ! factor 1.1: derive effective radius from volume-mean radius + ! factor 1000 is the water density + ! _chaud means that this is the CDR for liquid water clouds + ! + rad_chaud = & + 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) & + / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) + ! + ! Convert to um. CDR shall be at least 3 um. + ! + ! rad_chaud = MAX(rad_chaud*1.e6, 3.) + rad_chaud = MAX(rad_chaud*1.e6, 5.) + + ! Pre-industrial cloud opt thickness + ! + ! "radius" is calculated as rad_chaud above (plus the + ! ice cloud contribution) but using cdnc_pi instead of + ! cdnc. + radius = & + 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) & + / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) + radius = MAX(radius*1.e6, 5.) + + tc = t(i,k)-273.15 + rei = 0.71*tc + 61.29 + if (tc.le.-81.4) rei = 3.5 + if (zflwp(i).eq.0.) radius = 1. + if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. + cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius & + + zfiwp(i) * (3.448e-03 + 2.431/rei) + ENDIF ! ok_aie + ! For output diagnostics + ! + ! Cloud droplet effective radius [um] + ! + ! we multiply here with f * xl (fraction of liquid water + ! clouds in the grid cell) to avoid problems in the + ! averaging of the output. + ! In the output of IOIPSL, derive the real cloud droplet + ! effective radius as re/fl + ! + fl(i,k) = pclc(i,k)*(1.-zfice) + re(i,k) = rad_chaud*fl(i,k) + + !-jq end + + rel = rad_chaud + ! for ice clouds: as a function of the ambiant temperature + ! [formula used by Iacobellis and Somerville (2000), with an + ! asymptotical value of 3.5 microns at T<-81.4 C added to be + ! consistent with observations of Heymsfield et al. 1986]: + tc = t(i,k)-273.15 + rei = 0.71*tc + 61.29 + if (tc.le.-81.4) rei = 3.5 + + ! -- cloud optical thickness : + + ! [for liquid clouds, traditional formula, + ! for ice clouds, Ebert & Curry (1992)] + + if (zflwp(i).eq.0.) rel = 1. + if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. + pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) & + + zfiwp(i) * (3.448e-03 + 2.431/rei) + + ! -- cloud infrared emissivity: + + ! [the broadband infrared absorption coefficient is parameterized + ! as a function of the effective cld droplet radius] + + ! Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): + k_ice = k_ice0 + 1.0/rei + + pclemi(i,k) = 1.0 & + - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) + + endif ! ok_newmicro + + lo = (pclc(i,k) .LE. seuil_neb) + IF (lo) pclc(i,k) = 0.0 + IF (lo) pcltau(i,k) = 0.0 + IF (lo) pclemi(i,k) = 0.0 + + IF (lo) cldtaupi(i,k) = 0.0 + IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) + ENDDO + ENDDO + !cc DO k = 1, klev + !cc DO i = 1, klon + !cc t(i,k) = t(i,k) + !cc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) + !cc lo = pclc(i,k) .GT. (2.*1.e-5) + !cc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) + !cc . /(rg*pclc(i,k)) + !cc zradef = 10.0 + (1.-sigs(k))*45.0 + !cc pcltau(i,k) = 1.5 * zflwp / zradef + !cc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) + !cc zmsac = 0.13*(1.0-zfice) + 0.08*zfice + !cc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) + !cc if (.NOT.lo) pclc(i,k) = 0.0 + !cc if (.NOT.lo) pcltau(i,k) = 0.0 + !cc if (.NOT.lo) pclemi(i,k) = 0.0 + !cc ENDDO + !cc ENDDO + !ccccc print*, 'pas de nuage dans le rayonnement' + !ccccc DO k = 1, klev + !ccccc DO i = 1, klon + !ccccc pclc(i,k) = 0.0 + !ccccc pcltau(i,k) = 0.0 + !ccccc pclemi(i,k) = 0.0 + !ccccc ENDDO + !ccccc ENDDO + ! + ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS + ! + DO i = 1, klon + pct(i)=1.0 + pch(i)=1.0 + pcm(i) = 1.0 + pcl(i) = 1.0 + pctlwp(i) = 0.0 + ENDDO + ! + DO k = klev, 1, -1 + DO i = 1, klon + pctlwp(i) = pctlwp(i) & + + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG + pct(i) = pct(i)*(1.0-pclc(i,k)) + if (pplay(i,k).LE.cetahb*paprs(i,1)) & + pch(i) = pch(i)*(1.0-pclc(i,k)) + if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. & + pplay(i,k).LE.cetamb*paprs(i,1)) & + pcm(i) = pcm(i)*(1.0-pclc(i,k)) + if (pplay(i,k).GT.cetamb*paprs(i,1)) & + pcl(i) = pcl(i)*(1.0-pclc(i,k)) + ENDDO + ENDDO + ! + DO i = 1, klon + pct(i)=1.-pct(i) + pch(i)=1.-pch(i) + pcm(i)=1.-pcm(i) + pcl(i)=1.-pcl(i) + ENDDO + +END SUBROUTINE newmicro