--- trunk/libf/phylmd/nuage.f 2008/02/27 13:16:39 3 +++ trunk/libf/phylmd/nuage.f90 2011/09/23 12:28:01 52 @@ -1,407 +1,202 @@ -! -! $Header: /home/cvsroot/LMDZ4/libf/phylmd/nuage.F,v 1.1.1.1 2004/05/19 12:53:07 lmdzadmin Exp $ -! - SUBROUTINE nuage (paprs, pplay, - . t, pqlwp, pclc, pcltau, pclemi, - . pch, pcl, pcm, pct, pctlwp, - e ok_aie, - e sulfate, sulfate_pi, - e bl95_b0, bl95_b1, - s cldtaupi, re, fl) - use dimens_m - use dimphy - use YOMCST - IMPLICIT none -c====================================================================== -c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 -c Objet: Calculer epaisseur optique et emmissivite des nuages -c====================================================================== -c Arguments: -c t-------input-R-temperature -c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) -c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) -c ok_aie--input-L-apply aerosol indirect effect or not -c sulfate-input-R-sulfate aerosol mass concentration [um/m^3] -c sulfate_pi-input-R-dito, pre-industrial value -c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) -c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) -c -c cldtaupi-output-R-pre-industrial value of cloud optical thickness, -c needed for the diagnostics of the aerosol indirect -c radiative forcing (see radlwsw) -c re------output-R-Cloud droplet effective radius multiplied by fl [um] -c fl------output-R-Denominator to re, introduced to avoid problems in -c the averaging of the output. fl is the fraction of liquid -c water clouds within a grid cell -c -c pcltau--output-R-epaisseur optique des nuages -c pclemi--output-R-emissivite des nuages (0 a 1) -c====================================================================== -C -c - REAL, intent(in):: paprs(klon,klev+1) - real pplay(klon,klev) - REAL t(klon,klev) -c - REAL pclc(klon,klev) - REAL pqlwp(klon,klev) - REAL pcltau(klon,klev), pclemi(klon,klev) -c - REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) -c - LOGICAL lo -c - REAL cetahb, cetamb - PARAMETER (cetahb = 0.45, cetamb = 0.80) -C - INTEGER i, k - REAL zflwp, zradef, zfice, zmsac -c - REAL radius, rad_froid, rad_chaud, rad_chau1, rad_chau2 - PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) -ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) -c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) - REAL coef, coef_froi, coef_chau - PARAMETER (coef_chau=0.13, coef_froi=0.09) - REAL seuil_neb, t_glace - PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) - INTEGER nexpo ! exponentiel pour glace/eau - PARAMETER (nexpo=6) - -cjq for the aerosol indirect effect -cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 -cjq - LOGICAL ok_aie ! Apply AIE or not? - - REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] - REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] - REAL re(klon, klev) ! cloud droplet effective radius [um] - REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) - REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) - REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) - - REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) - - REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula - - REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag -cjq-end - -ccc PARAMETER (nexpo=1) -c -c Calculer l'epaisseur optique et l'emmissivite des nuages -c - DO k = 1, klev - DO i = 1, klon - rad_chaud = rad_chau1 - IF (k.LE.3) rad_chaud = rad_chau2 - - pclc(i,k) = MAX(pclc(i,k), seuil_neb) - zflwp = 1000.*pqlwp(i,k)/RG/pclc(i,k) - . *(paprs(i,k)-paprs(i,k+1)) - zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) - zfice = MIN(MAX(zfice,0.0),1.0) - zfice = zfice**nexpo - - IF (ok_aie) THEN - ! Formula "D" of Boucher and Lohmann, Tellus, 1995 - ! - cdnc(i,k) = 10.**(bl95_b0+bl95_b1* - . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 - ! Cloud droplet number concentration (CDNC) is restricted - ! to be within [20, 1000 cm^3] - ! - cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) - cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* - . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 - cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) - ! - ! - ! air density: pplay(i,k) / (RD * zT(i,k)) - ! factor 1.1: derive effective radius from volume-mean radius - ! factor 1000 is the water density - ! _chaud means that this is the CDR for liquid water clouds - ! - rad_chaud = - . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) - . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) - ! - ! Convert to um. CDR shall be at least 3 um. - ! - rad_chaud = MAX(rad_chaud*1.e6, 3.) - - ! For output diagnostics - ! - ! Cloud droplet effective radius [um] - ! - ! we multiply here with f * xl (fraction of liquid water - ! clouds in the grid cell) to avoid problems in the - ! averaging of the output. - ! In the output of IOIPSL, derive the real cloud droplet - ! effective radius as re/fl - ! - fl(i,k) = pclc(i,k)*(1.-zfice) - re(i,k) = rad_chaud*fl(i,k) - - ! Pre-industrial cloud opt thickness - ! - ! "radius" is calculated as rad_chaud above (plus the - ! ice cloud contribution) but using cdnc_pi instead of - ! cdnc. - radius = MAX(1.1e6 * ( (pqlwp(i,k)*pplay(i,k)/(RD*T(i,k))) - . / (4./3.*RPI*1000.*cdnc_pi(i,k)) )**(1./3.), - . 3.) * (1.-zfice) + rad_froid * zfice - cldtaupi(i,k) = 3.0/2.0 * zflwp / radius - . - ENDIF ! ok_aie - - radius = rad_chaud * (1.-zfice) + rad_froid * zfice - coef = coef_chau * (1.-zfice) + coef_froi * zfice - pcltau(i,k) = 3.0/2.0 * zflwp / radius - pclemi(i,k) = 1.0 - EXP( - coef * zflwp) - lo = (pclc(i,k) .LE. seuil_neb) - IF (lo) pclc(i,k) = 0.0 - IF (lo) pcltau(i,k) = 0.0 - IF (lo) pclemi(i,k) = 0.0 - - IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) - ENDDO - ENDDO -ccc DO k = 1, klev -ccc DO i = 1, klon -ccc t(i,k) = t(i,k) -ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) -ccc lo = pclc(i,k) .GT. (2.*1.e-5) -ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) -ccc . /(rg*pclc(i,k)) -ccc zradef = 10.0 + (1.-sigs(k))*45.0 -ccc pcltau(i,k) = 1.5 * zflwp / zradef -ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) -ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice -ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) -ccc if (.NOT.lo) pclc(i,k) = 0.0 -ccc if (.NOT.lo) pcltau(i,k) = 0.0 -ccc if (.NOT.lo) pclemi(i,k) = 0.0 -ccc ENDDO -ccc ENDDO -cccccc print*, 'pas de nuage dans le rayonnement' -cccccc DO k = 1, klev -cccccc DO i = 1, klon -cccccc pclc(i,k) = 0.0 -cccccc pcltau(i,k) = 0.0 -cccccc pclemi(i,k) = 0.0 -cccccc ENDDO -cccccc ENDDO -C -C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS -C - DO i = 1, klon - pct(i)=1.0 - pch(i)=1.0 - pcm(i) = 1.0 - pcl(i) = 1.0 - pctlwp(i) = 0.0 - ENDDO -C - DO k = klev, 1, -1 - DO i = 1, klon - pctlwp(i) = pctlwp(i) - . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG - pct(i) = pct(i)*(1.0-pclc(i,k)) - if (pplay(i,k).LE.cetahb*paprs(i,1)) - . pch(i) = pch(i)*(1.0-pclc(i,k)) - if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. - . pplay(i,k).LE.cetamb*paprs(i,1)) - . pcm(i) = pcm(i)*(1.0-pclc(i,k)) - if (pplay(i,k).GT.cetamb*paprs(i,1)) - . pcl(i) = pcl(i)*(1.0-pclc(i,k)) - ENDDO - ENDDO -C - DO i = 1, klon - pct(i)=1.-pct(i) - pch(i)=1.-pch(i) - pcm(i)=1.-pcm(i) - pcl(i)=1.-pcl(i) - ENDDO -C - RETURN - END - SUBROUTINE diagcld1(paprs,pplay,rain,snow,kbot,ktop, - . diafra,dialiq) - use dimens_m - use dimphy - use YOMCST - IMPLICIT none -c -c Laurent Li (LMD/CNRS), le 12 octobre 1998 -c (adaptation du code ECMWF) -c -c Dans certains cas, le schema pronostique des nuages n'est -c pas suffisament performant. On a donc besoin de diagnostiquer -c ces nuages. Je dois avouer que c'est une frustration. -c -c -c Arguments d'entree: - REAL, intent(in):: paprs(klon,klev+1) ! pression (Pa) a inter-couche - REAL pplay(klon,klev) ! pression (Pa) au milieu de couche - REAL t(klon,klev) ! temperature (K) - REAL q(klon,klev) ! humidite specifique (Kg/Kg) - REAL rain(klon) ! pluie convective (kg/m2/s) - REAL snow(klon) ! neige convective (kg/m2/s) - INTEGER ktop(klon) ! sommet de la convection - INTEGER kbot(klon) ! bas de la convection -c -c Arguments de sortie: - REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee - REAL dialiq(klon,klev) ! eau liquide nuageuse -c -c Constantes ajustables: - REAL CANVA, CANVB, CANVH - PARAMETER (CANVA=2.0, CANVB=0.3, CANVH=0.4) - REAL CCA, CCB, CCC - PARAMETER (CCA=0.125, CCB=1.5, CCC=0.8) - REAL CCFCT, CCSCAL - PARAMETER (CCFCT=0.400) - PARAMETER (CCSCAL=1.0E+11) - REAL CETAHB, CETAMB - PARAMETER (CETAHB=0.45, CETAMB=0.80) - REAL CCLWMR - PARAMETER (CCLWMR=1.E-04) - REAL ZEPSCR - PARAMETER (ZEPSCR=1.0E-10) -c -c Variables locales: - INTEGER i, k - REAL zcc(klon) -c -c Initialisation: -c - DO k = 1, klev - DO i = 1, klon - diafra(i,k) = 0.0 - dialiq(i,k) = 0.0 - ENDDO - ENDDO -c - DO i = 1, klon ! Calculer la fraction nuageuse - zcc(i) = 0.0 - IF((rain(i)+snow(i)).GT.0.) THEN - zcc(i)= CCA * LOG(MAX(ZEPSCR,(rain(i)+snow(i))*CCSCAL))-CCB - zcc(i)= MIN(CCC,MAX(0.0,zcc(i))) - ENDIF - ENDDO -c - DO i = 1, klon ! pour traiter les enclumes - diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)),zcc(i)*CCFCT) - IF ((zcc(i).GE.CANVH) .AND. - . (pplay(i,ktop(i)).LE.CETAHB*paprs(i,1))) - . diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)), - . MAX(zcc(i)*CCFCT,CANVA*(zcc(i)-CANVB))) - dialiq(i,ktop(i))=CCLWMR*diafra(i,ktop(i)) - ENDDO -c - DO k = 1, klev ! nuages convectifs (sauf enclumes) - DO i = 1, klon - IF (k.LT.ktop(i) .AND. k.GE.kbot(i)) THEN - diafra(i,k)=MAX(diafra(i,k),zcc(i)*CCFCT) - dialiq(i,k)=CCLWMR*diafra(i,k) - ENDIF - ENDDO - ENDDO -c - RETURN - END - SUBROUTINE diagcld2(paprs,pplay,t,q, diafra,dialiq) - use dimens_m - use dimphy - use YOMCST - use yoethf -c Fonctions thermodynamiques: - use fcttre - IMPLICIT none -c -c -c Arguments d'entree: - REAL, intent(in):: paprs(klon,klev+1) ! pression (Pa) a inter-couche - REAL pplay(klon,klev) ! pression (Pa) au milieu de couche - REAL t(klon,klev) ! temperature (K) - REAL q(klon,klev) ! humidite specifique (Kg/Kg) -c -c Arguments de sortie: - REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee - REAL dialiq(klon,klev) ! eau liquide nuageuse -c - REAL CETAMB - PARAMETER (CETAMB=0.80) - REAL CLOIA, CLOIB, CLOIC, CLOID - PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.6, CLOID=5.0) -ccc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) - REAL RGAMMAS - PARAMETER (RGAMMAS=0.05) - REAL CRHL - PARAMETER (CRHL=0.15) -ccc PARAMETER (CRHL=0.70) - REAL t_coup - PARAMETER (t_coup=234.0) -c -c Variables locales: - INTEGER i, k, kb, invb(klon) - REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp - REAL zdelta, zcor -c -c -c Initialisation: -c - DO k = 1, klev - DO i = 1, klon - diafra(i,k) = 0.0 - dialiq(i,k) = 0.0 - ENDDO - ENDDO -c - DO i = 1, klon - invb(i) = klev - zdthmin(i)=0.0 - ENDDO - - DO k = 2, klev/2-1 - DO i = 1, klon - zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) - . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) - zdthdp = zdthdp * CLOIA - IF (pplay(i,k).GT.CETAMB*paprs(i,1) .AND. - . zdthdp.LT.zdthmin(i) ) THEN - zdthmin(i) = zdthdp - invb(i) = k - ENDIF - ENDDO - ENDDO - - DO i = 1, klon - kb=invb(i) - IF (thermcep) THEN - zdelta=MAX(0.,SIGN(1.,RTT-t(i,kb))) - zqs= R2ES*FOEEW(t(i,kb),zdelta)/pplay(i,kb) - zqs=MIN(0.5,zqs) - zcor=1./(1.-RETV*zqs) - zqs=zqs*zcor - ELSE - IF (t(i,kb) .LT. t_coup) THEN - zqs = qsats(t(i,kb)) / pplay(i,kb) - ELSE - zqs = qsatl(t(i,kb)) / pplay(i,kb) - ENDIF - ENDIF - zcll = CLOIB * zdthmin(i) + CLOIC - zcll = MIN(1.0,MAX(0.0,zcll)) - zrhb= q(i,kb)/zqs - IF (zcll.GT.0.0.AND.zrhb.LT.CRHL) - . zcll=zcll*(1.-(CRHL-zrhb)*CLOID) - zcll=MIN(1.0,MAX(0.0,zcll)) - diafra(i,kb) = MAX(diafra(i,kb),zcll) - dialiq(i,kb)= diafra(i,kb) * RGAMMAS*zqs - ENDDO -c - RETURN - END +SUBROUTINE nuage (paprs, pplay, & + t, pqlwp, pclc, pcltau, pclemi, & + pch, pcl, pcm, pct, pctlwp, & + ok_aie, & + sulfate, sulfate_pi, & + bl95_b0, bl95_b1, & + cldtaupi, re, fl) + ! + ! From LMDZ4/libf/phylmd/nuage.F, version 1.1.1.1 2004/05/19 12:53:07 + ! + use dimens_m + use dimphy + use SUPHEC_M + IMPLICIT none + !====================================================================== + ! Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 + ! Objet: Calculer epaisseur optique et emmissivite des nuages + !====================================================================== + ! Arguments: + ! t-------input-R-temperature + ! pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) + ! pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) + ! ok_aie--input-L-apply aerosol indirect effect or not + ! sulfate-input-R-sulfate aerosol mass concentration [um/m^3] + ! sulfate_pi-input-R-dito, pre-industrial value + ! bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) + ! bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) + ! + ! cldtaupi-output-R-pre-industrial value of cloud optical thickness, + ! needed for the diagnostics of the aerosol indirect + ! radiative forcing (see radlwsw) + ! re------output-R-Cloud droplet effective radius multiplied by fl [um] + ! fl------output-R-Denominator to re, introduced to avoid problems in + ! the averaging of the output. fl is the fraction of liquid + ! water clouds within a grid cell + ! + ! pcltau--output-R-epaisseur optique des nuages + ! pclemi--output-R-emissivite des nuages (0 a 1) + !====================================================================== + ! + ! + REAL, intent(in):: paprs(klon,klev+1) + real, intent(in):: pplay(klon,klev) + REAL, intent(in):: t(klon,klev) + ! + REAL pclc(klon,klev) + REAL pqlwp(klon,klev) + REAL pcltau(klon,klev), pclemi(klon,klev) + ! + REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) + ! + LOGICAL lo + ! + REAL cetahb, cetamb + PARAMETER (cetahb = 0.45, cetamb = 0.80) + ! + INTEGER i, k + REAL zflwp, zradef, zfice, zmsac + ! + REAL radius, rad_froid, rad_chaud, rad_chau1, rad_chau2 + PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) + !cc PARAMETER (rad_chaud=15.0, rad_froid=35.0) + ! sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) + REAL coef, coef_froi, coef_chau + PARAMETER (coef_chau=0.13, coef_froi=0.09) + REAL seuil_neb, t_glace + PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) + INTEGER nexpo ! exponentiel pour glace/eau + PARAMETER (nexpo=6) + + !jq for the aerosol indirect effect + !jq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 + !jq + LOGICAL ok_aie ! Apply AIE or not? + + REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] + REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] + REAL re(klon, klev) ! cloud droplet effective radius [um] + REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) + REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) + REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) + + REAL fl(klon, klev) ! xliq * rneb (denominator to re ; fraction of liquid water clouds within the grid cell) + + REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula + + REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag + + !cc PARAMETER (nexpo=1) + ! + ! Calculer l'epaisseur optique et l'emmissivite des nuages + ! + DO k = 1, klev + DO i = 1, klon + rad_chaud = rad_chau1 + IF (k.LE.3) rad_chaud = rad_chau2 + + pclc(i,k) = MAX(pclc(i,k), seuil_neb) + zflwp = 1000.*pqlwp(i,k)/RG/pclc(i,k) & + *(paprs(i,k)-paprs(i,k+1)) + zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) + zfice = MIN(MAX(zfice,0.0),1.0) + zfice = zfice**nexpo + + IF (ok_aie) THEN + ! Formula "D" of Boucher and Lohmann, Tellus, 1995 + ! + cdnc(i,k) = 10.**(bl95_b0+bl95_b1* & + log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 + ! Cloud droplet number concentration (CDNC) is restricted + ! to be within [20, 1000 cm^3] + ! + cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) + cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* & + log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 + cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) + ! + ! + ! air density: pplay(i,k) / (RD * zT(i,k)) + ! factor 1.1: derive effective radius from volume-mean radius + ! factor 1000 is the water density + ! _chaud means that this is the CDR for liquid water clouds + ! + rad_chaud = & + 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) & + / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) + ! + ! Convert to um. CDR shall be at least 3 um. + ! + rad_chaud = MAX(rad_chaud*1.e6, 3.) + + ! For output diagnostics + ! + ! Cloud droplet effective radius [um] + ! + ! we multiply here with f * xl (fraction of liquid water + ! clouds in the grid cell) to avoid problems in the + ! averaging of the output. + ! In the output of IOIPSL, derive the real cloud droplet + ! effective radius as re/fl + ! + fl(i,k) = pclc(i,k)*(1.-zfice) + re(i,k) = rad_chaud*fl(i,k) + + ! Pre-industrial cloud opt thickness + ! + ! "radius" is calculated as rad_chaud above (plus the + ! ice cloud contribution) but using cdnc_pi instead of + ! cdnc. + radius = MAX(1.1e6 * ( (pqlwp(i,k)*pplay(i,k)/(RD*T(i,k))) & + / (4./3.*RPI*1000.*cdnc_pi(i,k)) )**(1./3.), & + 3.) * (1.-zfice) + rad_froid * zfice + cldtaupi(i,k) = 3.0/2.0 * zflwp / radius + + END IF ! ok_aie + + radius = rad_chaud * (1.-zfice) + rad_froid * zfice + coef = coef_chau * (1.-zfice) + coef_froi * zfice + pcltau(i,k) = 3.0/2.0 * zflwp / radius + pclemi(i,k) = 1.0 - EXP( - coef * zflwp) + lo = (pclc(i,k) .LE. seuil_neb) + IF (lo) pclc(i,k) = 0.0 + IF (lo) pcltau(i,k) = 0.0 + IF (lo) pclemi(i,k) = 0.0 + + IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) + END DO + END DO + ! + ! COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS + ! + DO i = 1, klon + pct(i)=1.0 + pch(i)=1.0 + pcm(i) = 1.0 + pcl(i) = 1.0 + pctlwp(i) = 0.0 + END DO + ! + DO k = klev, 1, -1 + DO i = 1, klon + pctlwp(i) = pctlwp(i) & + + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG + pct(i) = pct(i)*(1.0-pclc(i,k)) + if (pplay(i,k).LE.cetahb*paprs(i,1)) & + pch(i) = pch(i)*(1.0-pclc(i,k)) + if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. & + pplay(i,k).LE.cetamb*paprs(i,1)) & + pcm(i) = pcm(i)*(1.0-pclc(i,k)) + if (pplay(i,k).GT.cetamb*paprs(i,1)) & + pcl(i) = pcl(i)*(1.0-pclc(i,k)) + END DO + END DO + ! + DO i = 1, klon + pct(i)=1.-pct(i) + pch(i)=1.-pch(i) + pcm(i)=1.-pcm(i) + pcl(i)=1.-pcl(i) + END DO + ! +END SUBROUTINE nuage