--- trunk/libf/phylmd/physiq.f90 2008/02/27 13:16:39 3 +++ trunk/libf/phylmd/physiq.f90 2010/04/06 17:52:58 32 @@ -9,8 +9,8 @@ contains - SUBROUTINE physiq (nq, debut, lafin, rjourvrai, gmtime, pdtphys, paprs, & - pplay, pphi, pphis, presnivs, clesphy0, u, v, t, qx, omega, d_u, d_v, & + SUBROUTINE physiq(nq, firstcal, lafin, rdayvrai, gmtime, pdtphys, paprs, & + pplay, pphi, pphis, u, v, t, qx, omega, d_u, d_v, & d_t, d_qx, d_ps, dudyn, PVteta) ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28 @@ -23,51 +23,61 @@ !AA - stockage des moyennes des champs necessaires !AA en mode traceur off-line - USE ioipsl, only: ymds2ju, histwrite, histsync - use dimens_m, only: jjm, iim, llm - use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, & - clnsurf, epsfra - use dimphy, only: klon, nbtr - use conf_gcm_m, only: raz_date, offline, iphysiq - use dimsoil, only: nsoilmx - use temps, only: itau_phy, day_ref, annee_ref, itaufin - use clesphys, only: ecrit_hf, ecrit_hf2mth, & - ecrit_ins, iflag_con, ok_orolf, ok_orodr, ecrit_mth, ecrit_day, & - nbapp_rad, cycle_diurne, cdmmax, cdhmax, & - co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, new_oliq, & - ok_kzmin, soil_model - use iniprint, only: lunout, prt_level use abort_gcm_m, only: abort_gcm - use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega + USE calendar, only: ymds2ju + use clesphys, only: ecrit_hf, ecrit_ins, ecrit_mth, & + cdmmax, cdhmax, & + co2_ppm, ecrit_reg, ecrit_tra, ksta, ksta_ter, & + ok_kzmin + use clesphys2, only: iflag_con, ok_orolf, ok_orodr, nbapp_rad, & + cycle_diurne, new_oliq, soil_model use comgeomphy + use conf_gcm_m, only: raz_date, offline + use conf_phys_m, only: conf_phys use ctherm - use phytrac_m, only: phytrac + use dimens_m, only: jjm, iim, llm + use dimphy, only: klon, nbtr + use dimsoil, only: nsoilmx + use hgardfou_m, only: hgardfou + USE histcom, only: histsync + USE histwrite_m, only: histwrite + use indicesol, only: nbsrf, is_ter, is_lic, is_sic, is_oce, & + clnsurf, epsfra + use ini_hist, only: ini_histhf, ini_histday, ini_histins + use iniprint, only: prt_level use oasis_m + use orbite_m, only: orbite, zenang + use ozonecm_m, only: ozonecm + use phyetat0_m, only: phyetat0, rlat, rlon + use phyredem_m, only: phyredem + use phystokenc_m, only: phystokenc + use phytrac_m, only: phytrac + use qcheck_m, only: qcheck use radepsi use radopt + use temps, only: itau_phy, day_ref, annee_ref use yoethf - use ini_hist, only: ini_histhf, ini_histday, ini_histins - use orbite_m, only: orbite, zenang - use phyetat0_m, only: phyetat0, rlat, rlon - use hgardfou_m, only: hgardfou - use conf_phys_m, only: conf_phys + use YOMCST, only: rcpd, rtt, rlvtt, rg, ra, rsigma, retv, romega ! Declaration des constantes et des fonctions thermodynamiques : use fcttre, only: thermcep, foeew, qsats, qsatl ! Variables argument: - INTEGER nq ! input nombre de traceurs (y compris vapeur d'eau) - REAL rjourvrai ! input numero du jour de l'experience + INTEGER, intent(in):: nq ! nombre de traceurs (y compris vapeur d'eau) + + REAL, intent(in):: rdayvrai + ! (elapsed time since January 1st 0h of the starting year, in days) + REAL, intent(in):: gmtime ! heure de la journée en fraction de jour - REAL pdtphys ! input pas d'integration pour la physique (seconde) - LOGICAL, intent(in):: debut ! premier passage + REAL, intent(in):: pdtphys ! pas d'integration pour la physique (seconde) + LOGICAL, intent(in):: firstcal ! first call to "calfis" logical, intent(in):: lafin ! dernier passage REAL, intent(in):: paprs(klon, llm+1) ! (pression pour chaque inter-couche, en Pa) - - REAL pplay(klon, llm) + + REAL, intent(in):: pplay(klon, llm) ! (input pression pour le mileu de chaque couche (en Pa)) REAL pphi(klon, llm) @@ -75,15 +85,12 @@ REAL pphis(klon) ! input geopotentiel du sol - REAL presnivs(llm) - ! (input pressions approximat. des milieux couches ( en PA)) - REAL u(klon, llm) ! input vitesse dans la direction X (de O a E) en m/s REAL v(klon, llm) ! input vitesse Y (de S a N) en m/s REAL t(klon, llm) ! input temperature (K) - REAL qx(klon, llm, nq) - ! (input humidite specifique (kg/kg) et d'autres traceurs) + REAL, intent(in):: qx(klon, llm, nq) + ! (humidite specifique (kg/kg) et fractions massiques des autres traceurs) REAL omega(klon, llm) ! input vitesse verticale en Pa/s REAL d_u(klon, llm) ! output tendance physique de "u" (m/s/s) @@ -112,9 +119,9 @@ INTEGER, SAVE :: npas, nexca logical rnpb parameter(rnpb=.true.) - ! ocean = type de modele ocean a utiliser: force, slab, couple - character(len=6) ocean - SAVE ocean + + character(len=6), save:: ocean + ! (type de modèle océan à utiliser: "force" ou "slab" mais pas "couple") logical ok_ocean SAVE ok_ocean @@ -128,10 +135,8 @@ REAL fluxg(klon) !flux turbulents ocean-atmosphere ! Modele thermique du sol, a activer pour le cycle diurne: - logical ok_veget - save ok_veget - LOGICAL ok_journe ! sortir le fichier journalier - save ok_journe + logical, save:: ok_veget + LOGICAL, save:: ok_journe ! sortir le fichier journalier LOGICAL ok_mensuel ! sortir le fichier mensuel @@ -178,18 +183,10 @@ REAL swup0(klon, klevp1), swup(klon, klevp1) SAVE swdn0, swdn, swup0, swup - REAL SWdn200clr(klon), SWdn200(klon) - REAL SWup200clr(klon), SWup200(klon) - SAVE SWdn200clr, SWdn200, SWup200clr, SWup200 - REAL lwdn0(klon, klevp1), lwdn(klon, klevp1) REAL lwup0(klon, klevp1), lwup(klon, klevp1) SAVE lwdn0, lwdn, lwup0, lwup - REAL LWdn200clr(klon), LWdn200(klon) - REAL LWup200clr(klon), LWup200(klon) - SAVE LWdn200clr, LWdn200, LWup200clr, LWup200 - !IM Amip2 ! variables a une pression donnee @@ -204,57 +201,6 @@ '500 ', '400 ', '300 ', '250 ', '200 ', '150 ', '100 ', & '70 ', '50 ', '30 ', '20 ', '10 '/ - real tlevSTD(klon, nlevSTD), qlevSTD(klon, nlevSTD) - real rhlevSTD(klon, nlevSTD), philevSTD(klon, nlevSTD) - real ulevSTD(klon, nlevSTD), vlevSTD(klon, nlevSTD) - real wlevSTD(klon, nlevSTD) - - ! nout : niveau de output des variables a une pression donnee - INTEGER nout - PARAMETER(nout=3) !nout=1 : day; =2 : mth; =3 : NMC - - REAL tsumSTD(klon, nlevSTD, nout) - REAL usumSTD(klon, nlevSTD, nout), vsumSTD(klon, nlevSTD, nout) - REAL wsumSTD(klon, nlevSTD, nout), phisumSTD(klon, nlevSTD, nout) - REAL qsumSTD(klon, nlevSTD, nout), rhsumSTD(klon, nlevSTD, nout) - - SAVE tsumSTD, usumSTD, vsumSTD, wsumSTD, phisumSTD, & - qsumSTD, rhsumSTD - - logical oknondef(klon, nlevSTD, nout) - real tnondef(klon, nlevSTD, nout) - save tnondef - - ! les produits uvSTD, vqSTD, .., T2STD sont calcules - ! a partir des valeurs instantannees toutes les 6 h - ! qui sont moyennees sur le mois - - real uvSTD(klon, nlevSTD) - real vqSTD(klon, nlevSTD) - real vTSTD(klon, nlevSTD) - real wqSTD(klon, nlevSTD) - - real uvsumSTD(klon, nlevSTD, nout) - real vqsumSTD(klon, nlevSTD, nout) - real vTsumSTD(klon, nlevSTD, nout) - real wqsumSTD(klon, nlevSTD, nout) - - real vphiSTD(klon, nlevSTD) - real wTSTD(klon, nlevSTD) - real u2STD(klon, nlevSTD) - real v2STD(klon, nlevSTD) - real T2STD(klon, nlevSTD) - - real vphisumSTD(klon, nlevSTD, nout) - real wTsumSTD(klon, nlevSTD, nout) - real u2sumSTD(klon, nlevSTD, nout) - real v2sumSTD(klon, nlevSTD, nout) - real T2sumSTD(klon, nlevSTD, nout) - - SAVE uvsumSTD, vqsumSTD, vTsumSTD, wqsumSTD - SAVE vphisumSTD, wTsumSTD, u2sumSTD, v2sumSTD, T2sumSTD - !MI Amip2 - ! prw: precipitable water real prw(klon) @@ -263,7 +209,7 @@ REAL flwp(klon), fiwp(klon) REAL flwc(klon, llm), fiwc(klon, llm) - INTEGER l, kmax, lmax + INTEGER kmax, lmax PARAMETER(kmax=8, lmax=8) INTEGER kmaxm1, lmaxm1 PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1) @@ -315,19 +261,8 @@ integer nid_hf, nid_hf3d save nid_hf, nid_hf3d - INTEGER longcles - PARAMETER ( longcles = 20 ) - REAL clesphy0( longcles ) - - ! Variables quasi-arguments - - REAL xjour - SAVE xjour - ! Variables propres a la physique - REAL, SAVE:: dtime ! pas temporel de la physique (s) - INTEGER, save:: radpas ! (Radiative transfer computations are made every "radpas" call to ! "physiq".) @@ -335,9 +270,7 @@ REAL radsol(klon) SAVE radsol ! bilan radiatif au sol calcule par code radiatif - INTEGER, SAVE:: itap ! compteur pour la physique - REAL co2_ppm_etat0 - REAL solaire_etat0 + INTEGER, SAVE:: itap ! number of calls to "physiq" REAL ftsol(klon, nbsrf) SAVE ftsol ! temperature du sol @@ -364,31 +297,15 @@ REAL falblw(klon, nbsrf) SAVE falblw ! albedo par type de surface - ! Parametres de l'Orographie a l'Echelle Sous-Maille (OESM): - - REAL zmea(klon) - SAVE zmea ! orographie moyenne - - REAL zstd(klon) - SAVE zstd ! deviation standard de l'OESM - - REAL zsig(klon) - SAVE zsig ! pente de l'OESM - - REAL zgam(klon) - save zgam ! anisotropie de l'OESM - - REAL zthe(klon) - SAVE zthe ! orientation de l'OESM - - REAL zpic(klon) - SAVE zpic ! Maximum de l'OESM - - REAL zval(klon) - SAVE zval ! Minimum de l'OESM - - REAL rugoro(klon) - SAVE rugoro ! longueur de rugosite de l'OESM + ! Paramètres de l'orographie à l'échelle sous-maille (OESM) : + REAL, save:: zmea(klon) ! orographie moyenne + REAL, save:: zstd(klon) ! deviation standard de l'OESM + REAL, save:: zsig(klon) ! pente de l'OESM + REAL, save:: zgam(klon) ! anisotropie de l'OESM + REAL, save:: zthe(klon) ! orientation de l'OESM + REAL, save:: zpic(klon) ! Maximum de l'OESM + REAL, save:: zval(klon) ! Minimum de l'OESM + REAL, save:: rugoro(klon) ! longueur de rugosite de l'OESM REAL zulow(klon), zvlow(klon) @@ -449,9 +366,6 @@ !IM cf FH pour Tiedtke 080604 REAL rain_tiedtke(klon), snow_tiedtke(klon) - REAL total_rain(klon), nday_rain(klon) - save nday_rain - REAL evap(klon), devap(klon) ! evaporation et sa derivee REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee REAL dlw(klon) ! derivee infra rouge @@ -472,7 +386,7 @@ INTEGER julien - INTEGER, SAVE:: lmt_pas ! fréquence de mise à jour + INTEGER, SAVE:: lmt_pas ! number of time steps of "physics" per day REAL pctsrf(klon, nbsrf) !IM REAL pctsrf_new(klon, nbsrf) !pourcentage surfaces issus d'ORCHIDEE @@ -483,7 +397,7 @@ REAL albsollw(klon) SAVE albsollw ! albedo du sol total - REAL, SAVE:: wo(klon, llm) ! ozone + REAL, SAVE:: wo(klon, llm) ! column density of ozone in a cell, in kDU ! Declaration des procedures appelees @@ -494,14 +408,9 @@ EXTERNAL conema3 ! convect4.3 EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie) EXTERNAL nuage ! calculer les proprietes radiatives - EXTERNAL ozonecm ! prescrire l'ozone - EXTERNAL phyredem ! ecrire l'etat de redemarrage de la physique EXTERNAL radlwsw ! rayonnements solaire et infrarouge EXTERNAL transp ! transport total de l'eau et de l'energie - EXTERNAL ini_undefSTD !initialise a 0 une variable a 1 niveau de pression - EXTERNAL undefSTD !somme les valeurs definies d'1 var a 1 niveau de pression - ! Variables locales real clwcon(klon, llm), rnebcon(klon, llm) @@ -649,11 +558,10 @@ save ratqsbas, ratqshaut, ratqs ! Parametres lies au nouveau schema de nuages (SB, PDF) - real fact_cldcon - real facttemps + real, save:: fact_cldcon + real, save:: facttemps logical ok_newmicro save ok_newmicro - save fact_cldcon, facttemps real facteur integer iflag_cldcon @@ -661,10 +569,6 @@ logical ptconv(klon, llm) - ! Variables liees a l'ecriture de la bande histoire physique - - integer itau_w ! pas de temps ecriture = itap + itau_phy - ! Variables locales pour effectuer les appels en serie REAL t_seri(klon, llm), q_seri(klon, llm) @@ -676,12 +580,6 @@ REAL zx_rh(klon, llm) - INTEGER length - PARAMETER ( length = 100 ) - REAL tabcntr0( length ) - - INTEGER ndex2d(iim*(jjm + 1)), ndex3d(iim*(jjm + 1)*llm) - REAL zustrdr(klon), zvstrdr(klon) REAL zustrli(klon), zvstrli(klon) REAL zustrph(klon), zvstrph(klon) @@ -690,12 +588,9 @@ REAL dudyn(iim+1, jjm + 1, llm) REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique - REAL zx_tmp_fi3d(klon, llm) ! variable temporaire pour champs 3D - REAL zx_tmp_2d(iim, jjm + 1), zx_tmp_3d(iim, jjm + 1, llm) - INTEGER nid_day, nid_ins - SAVE nid_day, nid_ins + INTEGER, SAVE:: nid_day, nid_ins REAL ve_lay(klon, llm) ! transport meri. de l'energie a chaque niveau vert. REAL vq_lay(klon, llm) ! transport meri. de l'eau a chaque niveau vert. @@ -720,8 +615,7 @@ INTEGER ip_ebil ! PRINT level for energy conserv. diag. SAVE ip_ebil DATA ip_ebil/0/ - INTEGER if_ebil ! level for energy conserv. dignostics - SAVE if_ebil + INTEGER, SAVE:: if_ebil ! level for energy conservation diagnostics !+jld ec_conser REAL d_t_ec(klon, llm) ! tendance du a la conersion Ec -> E thermique REAL ZRCPD @@ -793,6 +687,11 @@ SAVE trmb2 SAVE trmb3 + real zmasse(klon, llm) + ! (column-density of mass of air in a cell, in kg m-2) + + real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 + !---------------------------------------------------------------- modname = 'physiq' @@ -802,21 +701,19 @@ END DO END IF ok_sync=.TRUE. - IF (nq .LT. 2) THEN + IF (nq < 2) THEN abort_message = 'eaux vapeur et liquide sont indispensables' - CALL abort_gcm (modname, abort_message, 1) + CALL abort_gcm(modname, abort_message, 1) ENDIF - xjour = rjourvrai - - test_debut: IF (debut) THEN + test_firstcal: IF (firstcal) THEN ! initialiser - u10m(:, :)=0. - v10m(:, :)=0. - t2m(:, :)=0. - q2m(:, :)=0. - ffonte(:, :)=0. - fqcalving(:, :)=0. + u10m=0. + v10m=0. + t2m=0. + q2m=0. + ffonte=0. + fqcalving=0. piz_ae(:, :, :)=0. tau_ae(:, :, :)=0. cg_ae(:, :, :)=0. @@ -829,23 +726,23 @@ solswai(:)=0. solswad(:)=0. - d_u_con(:, :) = 0.0 - d_v_con(:, :) = 0.0 - rnebcon0(:, :) = 0.0 - clwcon0(:, :) = 0.0 - rnebcon(:, :) = 0.0 - clwcon(:, :) = 0.0 - - pblh(:, :) =0. ! Hauteur de couche limite - plcl(:, :) =0. ! Niveau de condensation de la CLA - capCL(:, :) =0. ! CAPE de couche limite - oliqCL(:, :) =0. ! eau_liqu integree de couche limite - cteiCL(:, :) =0. ! cloud top instab. crit. couche limite - pblt(:, :) =0. ! T a la Hauteur de couche limite - therm(:, :) =0. - trmb1(:, :) =0. ! deep_cape - trmb2(:, :) =0. ! inhibition - trmb3(:, :) =0. ! Point Omega + d_u_con = 0.0 + d_v_con = 0.0 + rnebcon0 = 0.0 + clwcon0 = 0.0 + rnebcon = 0.0 + clwcon = 0.0 + + pblh =0. ! Hauteur de couche limite + plcl =0. ! Niveau de condensation de la CLA + capCL =0. ! CAPE de couche limite + oliqCL =0. ! eau_liqu integree de couche limite + cteiCL =0. ! cloud top instab. crit. couche limite + pblt =0. ! T a la Hauteur de couche limite + therm =0. + trmb1 =0. ! deep_cape + trmb2 =0. ! inhibition + trmb3 =0. ! Point Omega IF (if_ebil >= 1) d_h_vcol_phy=0. @@ -863,57 +760,45 @@ frugs = 0. itap = 0 itaprad = 0 - CALL phyetat0("startphy.nc", dtime, co2_ppm_etat0, solaire_etat0, & - pctsrf, ftsol, ftsoil, & - ocean, tslab, seaice, & !IM "slab" ocean - fqsurf, qsol, fsnow, & + CALL phyetat0("startphy.nc", pctsrf, ftsol, ftsoil, ocean, tslab, & + seaice, fqsurf, qsol, fsnow, & falbe, falblw, fevap, rain_fall, snow_fall, solsw, sollwdown, & - dlw, radsol, frugs, agesno, clesphy0, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, tabcntr0, & + dlw, radsol, frugs, agesno, & + zmea, zstd, zsig, zgam, zthe, zpic, zval, & t_ancien, q_ancien, ancien_ok, rnebcon, ratqs, clwcon, & run_off_lic_0) ! ATTENTION : il faudra a terme relire q2 dans l'etat initial q2(:, :, :)=1.e-8 - radpas = NINT( 86400. / dtime / nbapp_rad) + radpas = NINT( 86400. / pdtphys / nbapp_rad) ! on remet le calendrier a zero + IF (raz_date) itau_phy = 0 - IF (raz_date == 1) THEN - itau_phy = 0 - ENDIF - - PRINT*, 'cycle_diurne =', cycle_diurne + PRINT *, 'cycle_diurne = ', cycle_diurne IF(ocean.NE.'force ') THEN ok_ocean=.TRUE. ENDIF - CALL printflag( tabcntr0, radpas, ok_ocean, ok_oasis, ok_journe, & - ok_instan, ok_region ) + CALL printflag(radpas, ok_ocean, ok_oasis, ok_journe, ok_instan, & + ok_region) - IF (ABS(dtime-pdtphys).GT.0.001) THEN - WRITE(lunout, *) 'Pas physique n est pas correct', dtime, & - pdtphys - abort_message='Pas physique n est pas correct ' - call abort_gcm(modname, abort_message, 1) - ENDIF - - IF (dtime*REAL(radpas).GT.21600..AND.cycle_diurne) THEN - WRITE(lunout, *)'Nbre d appels au rayonnement insuffisant' - WRITE(lunout, *)"Au minimum 4 appels par jour si cycle diurne" + IF (pdtphys*REAL(radpas).GT.21600..AND.cycle_diurne) THEN + print *,'Nbre d appels au rayonnement insuffisant' + print *,"Au minimum 4 appels par jour si cycle diurne" abort_message='Nbre d appels au rayonnement insuffisant' call abort_gcm(modname, abort_message, 1) ENDIF - WRITE(lunout, *)"Clef pour la convection, iflag_con=", iflag_con - WRITE(lunout, *)"Clef pour le driver de la convection, ok_cvl=", & + print *,"Clef pour la convection, iflag_con=", iflag_con + print *,"Clef pour le driver de la convection, ok_cvl=", & ok_cvl ! Initialisation pour la convection de K.E. (sb): IF (iflag_con >= 3) THEN - WRITE(lunout, *)"*** Convection de Kerry Emanuel 4.3 " + print *,"*** Convection de Kerry Emanuel 4.3 " !IM15/11/02 rajout initialisation ibas_con, itop_con cf. SB =>BEG DO i = 1, klon @@ -925,46 +810,37 @@ ENDIF IF (ok_orodr) THEN - DO i=1, klon - rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0) - ENDDO + rugoro = MAX(1e-5, zstd * zsig / 2) CALL SUGWD(klon, llm, paprs, pplay) + else + rugoro = 0. ENDIF - lmt_pas = NINT(86400. / dtime) ! tous les jours - print *, 'La frequence de lecture surface est de ', lmt_pas + lmt_pas = NINT(86400. / pdtphys) ! tous les jours + print *, 'Number of time steps of "physics" per day: ', lmt_pas - ecrit_ins = NINT(ecrit_ins/dtime) - ecrit_hf = NINT(ecrit_hf/dtime) - ecrit_day = NINT(ecrit_day/dtime) - ecrit_mth = NINT(ecrit_mth/dtime) - ecrit_tra = NINT(86400.*ecrit_tra/dtime) - ecrit_reg = NINT(ecrit_reg/dtime) + ecrit_ins = NINT(ecrit_ins/pdtphys) + ecrit_hf = NINT(ecrit_hf/pdtphys) + ecrit_mth = NINT(ecrit_mth/pdtphys) + ecrit_tra = NINT(86400.*ecrit_tra/pdtphys) + ecrit_reg = NINT(ecrit_reg/pdtphys) ! Initialiser le couplage si necessaire npas = 0 nexca = 0 - if (ocean == 'couple') then - npas = itaufin/ iphysiq - nexca = 86400 / int(dtime) - write(lunout, *)' Ocean couple' - write(lunout, *)' Valeurs des pas de temps' - write(lunout, *)' npas = ', npas - write(lunout, *)' nexca = ', nexca - endif - write(lunout, *)'AVANT HIST IFLAG_CON=', iflag_con + print *,'AVANT HIST IFLAG_CON=', iflag_con ! Initialisation des sorties - call ini_histhf(dtime, presnivs, nid_hf, nid_hf3d) - call ini_histday(dtime, presnivs, ok_journe, nid_day) - call ini_histins(dtime, presnivs, ok_instan, nid_ins) + call ini_histhf(pdtphys, nid_hf, nid_hf3d) + call ini_histday(pdtphys, ok_journe, nid_day, nq) + call ini_histins(pdtphys, ok_instan, nid_ins) CALL ymds2ju(annee_ref, 1, int(day_ref), 0., date0) !XXXPB Positionner date0 pour initialisation de ORCHIDEE WRITE(*, *) 'physiq date0 : ', date0 - ENDIF test_debut + ENDIF test_firstcal ! Mettre a zero des variables de sortie (pour securite) @@ -985,8 +861,8 @@ ENDDO ENDDO ENDDO - da(:, :)=0. - mp(:, :)=0. + da=0. + mp=0. phi(:, :, :)=0. ! Ne pas affecter les valeurs entrees de u, v, h, et q @@ -1018,8 +894,8 @@ IF (if_ebil >= 1) THEN ztit='after dynamic' - CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) ! Comme les tendances de la physique sont ajoute dans la dynamique, ! on devrait avoir que la variation d'entalpie par la dynamique @@ -1037,8 +913,8 @@ IF (ancien_ok) THEN DO k = 1, llm DO i = 1, klon - d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/dtime - d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/dtime + d_t_dyn(i, k) = (t_seri(i, k)-t_ancien(i, k))/pdtphys + d_q_dyn(i, k) = (q_seri(i, k)-q_ancien(i, k))/pdtphys ENDDO ENDDO ELSE @@ -1065,15 +941,19 @@ ! Incrementer le compteur de la physique - itap = itap + 1 - julien = MOD(NINT(xjour), 360) + itap = itap + 1 + julien = MOD(NINT(rdayvrai), 360) if (julien == 0) julien = 360 + forall (k = 1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg + ! Mettre en action les conditions aux limites (albedo, sst, etc.). ! Prescrire l'ozone et calculer l'albedo sur l'ocean. - IF (MOD(itap - 1, lmt_pas) == 0) THEN - CALL ozonecm(REAL(julien), rlat, paprs, wo) + if (nq >= 5) then + wo = qx(:, :, 5) * zmasse / dobson_u / 1e3 + else IF (MOD(itap - 1, lmt_pas) == 0) THEN + wo = ozonecm(REAL(julien), paprs) ENDIF ! Re-evaporer l'eau liquide nuageuse @@ -1094,8 +974,8 @@ IF (if_ebil >= 2) THEN ztit='after reevap' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 1, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) call diagphy(airephy, ztit, ip_ebil & , zero_v, zero_v, zero_v, zero_v, zero_v & @@ -1125,7 +1005,7 @@ CALL orbite(REAL(julien), zlongi, dist) IF (cycle_diurne) THEN - zdtime = dtime * REAL(radpas) + zdtime = pdtphys * REAL(radpas) CALL zenang(zlongi, gmtime, zdtime, rmu0, fract) ELSE rmu0 = -999.999 @@ -1154,7 +1034,7 @@ fder = dlw - CALL clmain(dtime, itap, date0, pctsrf, pctsrf_new, & + CALL clmain(pdtphys, itap, date0, pctsrf, pctsrf_new, & t_seri, q_seri, u_seri, v_seri, & julien, rmu0, co2_ppm, & ok_veget, ocean, npas, nexca, ftsol, & @@ -1164,7 +1044,7 @@ fluxlat, rain_fall, snow_fall, & fsolsw, fsollw, sollwdown, fder, & rlon, rlat, cuphy, cvphy, frugs, & - debut, lafin, agesno, rugoro, & + firstcal, lafin, agesno, rugoro, & d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, d_ts, & fluxt, fluxq, fluxu, fluxv, cdragh, cdragm, & q2, dsens, devap, & @@ -1211,8 +1091,8 @@ IF (if_ebil >= 2) THEN ztit='after clmain' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) call diagphy(airephy, ztit, ip_ebil & , zero_v, zero_v, zero_v, zero_v, sens & @@ -1282,25 +1162,25 @@ DO nsrf = 1, nbsrf DO i = 1, klon - IF (pctsrf(i, nsrf) .LT. epsfra) ftsol(i, nsrf) = zxtsol(i) + IF (pctsrf(i, nsrf) < epsfra) ftsol(i, nsrf) = zxtsol(i) - IF (pctsrf(i, nsrf) .LT. epsfra) t2m(i, nsrf) = zt2m(i) - IF (pctsrf(i, nsrf) .LT. epsfra) q2m(i, nsrf) = zq2m(i) - IF (pctsrf(i, nsrf) .LT. epsfra) u10m(i, nsrf) = zu10m(i) - IF (pctsrf(i, nsrf) .LT. epsfra) v10m(i, nsrf) = zv10m(i) - IF (pctsrf(i, nsrf) .LT. epsfra) ffonte(i, nsrf) = zxffonte(i) - IF (pctsrf(i, nsrf) .LT. epsfra) & + IF (pctsrf(i, nsrf) < epsfra) t2m(i, nsrf) = zt2m(i) + IF (pctsrf(i, nsrf) < epsfra) q2m(i, nsrf) = zq2m(i) + IF (pctsrf(i, nsrf) < epsfra) u10m(i, nsrf) = zu10m(i) + IF (pctsrf(i, nsrf) < epsfra) v10m(i, nsrf) = zv10m(i) + IF (pctsrf(i, nsrf) < epsfra) ffonte(i, nsrf) = zxffonte(i) + IF (pctsrf(i, nsrf) < epsfra) & fqcalving(i, nsrf) = zxfqcalving(i) - IF (pctsrf(i, nsrf) .LT. epsfra) pblh(i, nsrf)=s_pblh(i) - IF (pctsrf(i, nsrf) .LT. epsfra) plcl(i, nsrf)=s_lcl(i) - IF (pctsrf(i, nsrf) .LT. epsfra) capCL(i, nsrf)=s_capCL(i) - IF (pctsrf(i, nsrf) .LT. epsfra) oliqCL(i, nsrf)=s_oliqCL(i) - IF (pctsrf(i, nsrf) .LT. epsfra) cteiCL(i, nsrf)=s_cteiCL(i) - IF (pctsrf(i, nsrf) .LT. epsfra) pblT(i, nsrf)=s_pblT(i) - IF (pctsrf(i, nsrf) .LT. epsfra) therm(i, nsrf)=s_therm(i) - IF (pctsrf(i, nsrf) .LT. epsfra) trmb1(i, nsrf)=s_trmb1(i) - IF (pctsrf(i, nsrf) .LT. epsfra) trmb2(i, nsrf)=s_trmb2(i) - IF (pctsrf(i, nsrf) .LT. epsfra) trmb3(i, nsrf)=s_trmb3(i) + IF (pctsrf(i, nsrf) < epsfra) pblh(i, nsrf)=s_pblh(i) + IF (pctsrf(i, nsrf) < epsfra) plcl(i, nsrf)=s_lcl(i) + IF (pctsrf(i, nsrf) < epsfra) capCL(i, nsrf)=s_capCL(i) + IF (pctsrf(i, nsrf) < epsfra) oliqCL(i, nsrf)=s_oliqCL(i) + IF (pctsrf(i, nsrf) < epsfra) cteiCL(i, nsrf)=s_cteiCL(i) + IF (pctsrf(i, nsrf) < epsfra) pblT(i, nsrf)=s_pblT(i) + IF (pctsrf(i, nsrf) < epsfra) therm(i, nsrf)=s_therm(i) + IF (pctsrf(i, nsrf) < epsfra) trmb1(i, nsrf)=s_trmb1(i) + IF (pctsrf(i, nsrf) < epsfra) trmb2(i, nsrf)=s_trmb2(i) + IF (pctsrf(i, nsrf) < epsfra) trmb3(i, nsrf)=s_trmb3(i) ENDDO ENDDO @@ -1315,14 +1195,14 @@ DO k = 1, llm DO i = 1, klon conv_q(i, k) = d_q_dyn(i, k) & - + d_q_vdf(i, k)/dtime + + d_q_vdf(i, k)/pdtphys conv_t(i, k) = d_t_dyn(i, k) & - + d_t_vdf(i, k)/dtime + + d_t_vdf(i, k)/pdtphys ENDDO ENDDO IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - WRITE(lunout, *) "avantcon=", za + print *, "avantcon=", za ENDIF zx_ajustq = .FALSE. IF (iflag_con == 2) zx_ajustq=.TRUE. @@ -1333,14 +1213,14 @@ DO k = 1, llm DO i = 1, klon z_avant(i) = z_avant(i) + (q_seri(i, k)+ql_seri(i, k)) & - *(paprs(i, k)-paprs(i, k+1))/RG + *zmasse(i, k) ENDDO ENDDO ENDIF IF (iflag_con == 1) THEN stop 'reactiver le call conlmd dans physiq.F' ELSE IF (iflag_con == 2) THEN - CALL conflx(dtime, paprs, pplay, t_seri, q_seri, & + CALL conflx(pdtphys, paprs, pplay, t_seri, q_seri, & conv_t, conv_q, zxfluxq(1, 1), omega, & d_t_con, d_q_con, rain_con, snow_con, & pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & @@ -1361,9 +1241,7 @@ ! (driver commun aux versions 3 et 4) IF (ok_cvl) THEN ! new driver for convectL - - CALL concvl (iflag_con, & - dtime, paprs, pplay, t_seri, q_seri, & + CALL concvl(iflag_con, pdtphys, paprs, pplay, t_seri, q_seri, & u_seri, v_seri, tr_seri, ntra, & ema_work1, ema_work2, & d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & @@ -1375,12 +1253,10 @@ da, phi, mp) clwcon0=qcondc - pmfu(:, :)=upwd(:, :)+dnwd(:, :) - + pmfu=upwd+dnwd ELSE ! ok_cvl ! MAF conema3 ne contient pas les traceurs - CALL conema3 (dtime, & - paprs, pplay, t_seri, q_seri, & + CALL conema3 (pdtphys, paprs, pplay, t_seri, q_seri, & u_seri, v_seri, tr_seri, ntra, & ema_work1, ema_work2, & d_t_con, d_q_con, d_u_con, d_v_con, d_tr, & @@ -1390,7 +1266,6 @@ pbase & , bbase, dtvpdt1, dtvpdq1, dplcldt, dplcldr & , clwcon0) - ENDIF ! ok_cvl IF (.NOT. ok_gust) THEN @@ -1411,7 +1286,7 @@ zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor ELSE - IF (zx_t.LT.t_coup) THEN + IF (zx_t < t_coup) THEN zx_qs = qsats(zx_t)/pplay(i, k) ELSE zx_qs = qsatl(zx_t)/pplay(i, k) @@ -1422,11 +1297,11 @@ ENDDO ! calcul des proprietes des nuages convectifs - clwcon0(:, :)=fact_cldcon*clwcon0(:, :) + clwcon0=fact_cldcon*clwcon0 call clouds_gno & (klon, llm, q_seri, zqsat, clwcon0, ptconv, ratqsc, rnebcon0) ELSE - WRITE(lunout, *) "iflag_con non-prevu", iflag_con + print *, "iflag_con non-prevu", iflag_con stop 1 ENDIF @@ -1441,8 +1316,8 @@ IF (if_ebil >= 2) THEN ztit='after convect' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) call diagphy(airephy, ztit, ip_ebil & , zero_v, zero_v, zero_v, zero_v, zero_v & @@ -1453,7 +1328,7 @@ IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - WRITE(lunout, *)"aprescon=", za + print *,"aprescon=", za zx_t = 0.0 za = 0.0 DO i = 1, klon @@ -1461,8 +1336,8 @@ zx_t = zx_t + (rain_con(i)+ & snow_con(i))*airephy(i)/REAL(klon) ENDDO - zx_t = zx_t/za*dtime - WRITE(lunout, *)"Precip=", zx_t + zx_t = zx_t/za*pdtphys + print *,"Precip=", zx_t ENDIF IF (zx_ajustq) THEN DO i = 1, klon @@ -1471,17 +1346,17 @@ DO k = 1, llm DO i = 1, klon z_apres(i) = z_apres(i) + (q_seri(i, k)+ql_seri(i, k)) & - *(paprs(i, k)-paprs(i, k+1))/RG + *zmasse(i, k) ENDDO ENDDO DO i = 1, klon - z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) & + z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*pdtphys) & /z_apres(i) ENDDO DO k = 1, llm DO i = 1, klon IF (z_factor(i).GT.(1.0+1.0E-08) .OR. & - z_factor(i).LT.(1.0-1.0E-08)) THEN + z_factor(i) < (1.0-1.0E-08)) THEN q_seri(i, k) = q_seri(i, k) * z_factor(i) ENDIF ENDDO @@ -1491,28 +1366,28 @@ ! Convection seche (thermiques ou ajustement) - d_t_ajs(:, :)=0. - d_u_ajs(:, :)=0. - d_v_ajs(:, :)=0. - d_q_ajs(:, :)=0. - fm_therm(:, :)=0. - entr_therm(:, :)=0. + d_t_ajs=0. + d_u_ajs=0. + d_v_ajs=0. + d_q_ajs=0. + fm_therm=0. + entr_therm=0. - IF(prt_level>9)WRITE(lunout, *) & + IF(prt_level>9)print *, & 'AVANT LA CONVECTION SECHE, iflag_thermals=' & , iflag_thermals, ' nsplit_thermals=', nsplit_thermals - if(iflag_thermals.lt.0) then + if(iflag_thermals < 0) then ! Rien - IF(prt_level>9)WRITE(lunout, *)'pas de convection' + IF(prt_level>9)print *,'pas de convection' else if(iflag_thermals == 0) then ! Ajustement sec - IF(prt_level>9)WRITE(lunout, *)'ajsec' + IF(prt_level>9)print *,'ajsec' CALL ajsec(paprs, pplay, t_seri, q_seri, d_t_ajs, d_q_ajs) - t_seri(:, :) = t_seri(:, :) + d_t_ajs(:, :) - q_seri(:, :) = q_seri(:, :) + d_q_ajs(:, :) + t_seri = t_seri + d_t_ajs + q_seri = q_seri + d_q_ajs else ! Thermiques - IF(prt_level>9)WRITE(lunout, *)'JUSTE AVANT, iflag_thermals=' & + IF(prt_level>9)print *,'JUSTE AVANT, iflag_thermals=' & , iflag_thermals, ' nsplit_thermals=', nsplit_thermals call calltherm(pdtphys & , pplay, paprs, pphi & @@ -1523,8 +1398,8 @@ IF (if_ebil >= 2) THEN ztit='after dry_adjust' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) END IF @@ -1560,16 +1435,16 @@ ! 1e4 (en gros 3 heures), en dur pour le moment, est le temps de ! relaxation des ratqs facteur=exp(-pdtphys*facttemps) - ratqs(:, :)=max(ratqs(:, :)*facteur, ratqss(:, :)) - ratqs(:, :)=max(ratqs(:, :), ratqsc(:, :)) + ratqs=max(ratqs*facteur, ratqss) + ratqs=max(ratqs, ratqsc) else ! on ne prend que le ratqs stable pour fisrtilp - ratqs(:, :)=ratqss(:, :) + ratqs=ratqss endif ! Appeler le processus de condensation a grande echelle ! et le processus de precipitation - CALL fisrtilp(dtime, paprs, pplay, & + CALL fisrtilp(pdtphys, paprs, pplay, & t_seri, q_seri, ptconv, ratqs, & d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, & rain_lsc, snow_lsc, & @@ -1590,7 +1465,7 @@ ENDDO IF (check) THEN za = qcheck(klon, llm, paprs, q_seri, ql_seri, airephy) - WRITE(lunout, *)"apresilp=", za + print *,"apresilp=", za zx_t = 0.0 za = 0.0 DO i = 1, klon @@ -1598,14 +1473,14 @@ zx_t = zx_t + (rain_lsc(i) & + snow_lsc(i))*airephy(i)/REAL(klon) ENDDO - zx_t = zx_t/za*dtime - WRITE(lunout, *)"Precip=", zx_t + zx_t = zx_t/za*pdtphys + print *,"Precip=", zx_t ENDIF IF (if_ebil >= 2) THEN ztit='after fisrt' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) call diagphy(airephy, ztit, ip_ebil & , zero_v, zero_v, zero_v, zero_v, zero_v & @@ -1626,9 +1501,9 @@ rain_tiedtke=0. do k=1, llm do i=1, klon - if (d_q_con(i, k).lt.0.) then + if (d_q_con(i, k) < 0.) then rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i, k)/pdtphys & - *(paprs(i, k)-paprs(i, k+1))/rg + *zmasse(i, k) endif enddo enddo @@ -1648,9 +1523,9 @@ ENDDO ELSE IF (iflag_cldcon == 3) THEN - ! On prend pour les nuages convectifs le max du calcul de la - ! convection et du calcul du pas de temps précédent diminué d'un facteur - ! facttemps + ! On prend pour les nuages convectifs le max du calcul de la + ! convection et du calcul du pas de temps précédent diminué d'un facteur + ! facttemps facteur = pdtphys *facttemps do k=1, llm do i=1, klon @@ -1664,8 +1539,8 @@ enddo ! On prend la somme des fractions nuageuses et des contenus en eau - cldfra(:, :)=min(max(cldfra(:, :), rnebcon(:, :)), 1.) - cldliq(:, :)=cldliq(:, :)+rnebcon(:, :)*clwcon(:, :) + cldfra=min(max(cldfra, rnebcon), 1.) + cldliq=cldliq+rnebcon*clwcon ENDIF @@ -1692,8 +1567,8 @@ IF (if_ebil >= 2) THEN ztit="after diagcld" - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) END IF @@ -1709,7 +1584,7 @@ zcor = 1./(1.-retv*zx_qs) zx_qs = zx_qs*zcor ELSE - IF (zx_t.LT.t_coup) THEN + IF (zx_t < t_coup) THEN zx_qs = qsats(zx_t)/pplay(i, k) ELSE zx_qs = qsatl(zx_t)/pplay(i, k) @@ -1723,8 +1598,8 @@ !jq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr) IF (ok_ade.OR.ok_aie) THEN ! Get sulfate aerosol distribution - CALL readsulfate(rjourvrai, debut, sulfate) - CALL readsulfate_preind(rjourvrai, debut, sulfate_pi) + CALL readsulfate(rdayvrai, firstcal, sulfate) + CALL readsulfate_preind(rdayvrai, firstcal, sulfate_pi) ! Calculate aerosol optical properties (Olivier Boucher) CALL aeropt(pplay, paprs, t_seri, sulfate, rhcl, & @@ -1796,14 +1671,14 @@ DO k = 1, llm DO i = 1, klon t_seri(i, k) = t_seri(i, k) & - + (heat(i, k)-cool(i, k)) * dtime/86400. + + (heat(i, k)-cool(i, k)) * pdtphys/86400. ENDDO ENDDO IF (if_ebil >= 2) THEN ztit='after rad' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) call diagphy(airephy, ztit, ip_ebil & , topsw, toplw, solsw, sollw, zero_v & @@ -1831,12 +1706,11 @@ bils(i) = radsol(i) - sens(i) + zxfluxlat(i) ENDDO - !moddeblott(jan95) + !mod deb lott(jan95) ! Appeler le programme de parametrisation de l'orographie ! a l'echelle sous-maille: IF (ok_orodr) THEN - ! selection des points pour lesquels le shema est actif: igwd=0 DO i=1, klon @@ -1848,7 +1722,7 @@ ENDIF ENDDO - CALL drag_noro(klon, llm, dtime, paprs, pplay, & + CALL drag_noro(klon, llm, pdtphys, paprs, pplay, & zmea, zstd, zsig, zgam, zthe, zpic, zval, & igwd, idx, itest, & t_seri, u_seri, v_seri, & @@ -1863,8 +1737,7 @@ v_seri(i, k) = v_seri(i, k) + d_v_oro(i, k) ENDDO ENDDO - - ENDIF ! fin de test sur ok_orodr + ENDIF IF (ok_orolf) THEN @@ -1879,7 +1752,7 @@ ENDIF ENDDO - CALL lift_noro(klon, llm, dtime, paprs, pplay, & + CALL lift_noro(klon, llm, pdtphys, paprs, pplay, & rlat, zmea, zstd, zpic, & itest, & t_seri, u_seri, v_seri, & @@ -1905,16 +1778,14 @@ ENDDO DO k = 1, llm DO i = 1, klon - zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/dtime* & - (paprs(i, k)-paprs(i, k+1))/rg - zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/dtime* & - (paprs(i, k)-paprs(i, k+1))/rg + zustrph(i)=zustrph(i)+(u_seri(i, k)-u(i, k))/pdtphys* zmasse(i, k) + zvstrph(i)=zvstrph(i)+(v_seri(i, k)-v(i, k))/pdtphys* zmasse(i, k) ENDDO ENDDO !IM calcul composantes axiales du moment angulaire et couple des montagnes - CALL aaam_bud (27, klon, llm, rjourvrai, gmtime, & + CALL aaam_bud(27, klon, llm, gmtime, & ra, rg, romega, & rlat, rlon, pphis, & zustrdr, zustrli, zustrph, & @@ -1924,45 +1795,30 @@ IF (if_ebil >= 2) THEN ztit='after orography' - CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 2, 2, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) END IF - !AA Installation de l'interface online-offline pour traceurs - - ! Calcul des tendances traceurs - - call phytrac(rnpb, itap, julien, gmtime, debut, lafin, nq-2, & - dtime, u, v, t, paprs, pplay, & - pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & - ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, & - pctsrf, frac_impa, frac_nucl, & - presnivs, pphis, pphi, albsol, qx(1, 1, 1), & - rhcl, cldfra, rneb, diafra, cldliq, & - itop_con, ibas_con, pmflxr, pmflxs, & - prfl, psfl, da, phi, mp, upwd, dnwd, & - tr_seri) + ! Calcul des tendances traceurs + call phytrac(rnpb, itap, lmt_pas, julien, gmtime, firstcal, lafin, nq-2, & + pdtphys, u, v, t, paprs, pplay, pmfu, pmfd, pen_u, pde_u, pen_d, & + pde_d, ycoefh, fm_therm, entr_therm, yu1, yv1, ftsol, pctsrf, & + frac_impa, frac_nucl, pphis, pphi, albsol, rhcl, cldfra, & + rneb, diafra, cldliq, itop_con, ibas_con, pmflxr, pmflxs, prfl, & + psfl, da, phi, mp, upwd, dnwd, tr_seri, zmasse) IF (offline) THEN - - print*, 'Attention on met a 0 les thermiques pour phystoke' - call phystokenc(pdtphys, rlon, rlat, & - t, pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, & - fm_therm, entr_therm, & - ycoefh, yu1, yv1, ftsol, pctsrf, & - frac_impa, frac_nucl, & - pphis, airephy, dtime, itap) - + call phystokenc(pdtphys, rlon, rlat, t, pmfu, pmfd, pen_u, pde_u, & + pen_d, pde_d, fm_therm, entr_therm, ycoefh, yu1, yv1, ftsol, & + pctsrf, frac_impa, frac_nucl, pphis, airephy, pdtphys, itap) ENDIF ! Calculer le transport de l'eau et de l'energie (diagnostique) + CALL transp(paprs, zxtsol, t_seri, q_seri, u_seri, v_seri, zphi, ve, vq, & + ue, uq) - CALL transp (paprs, zxtsol, & - t_seri, q_seri, u_seri, v_seri, zphi, & - ve, vq, ue, uq) - - !IM diag. bilKP + ! diag. bilKP CALL transp_lay (paprs, zxtsol, & t_seri, q_seri, u_seri, v_seri, zphi, & @@ -1977,14 +1833,14 @@ d_t_ec(i, k)=0.5/ZRCPD & *(u(i, k)**2+v(i, k)**2-u_seri(i, k)**2-v_seri(i, k)**2) t_seri(i, k)=t_seri(i, k)+d_t_ec(i, k) - d_t_ec(i, k) = d_t_ec(i, k)/dtime + d_t_ec(i, k) = d_t_ec(i, k)/pdtphys END DO END DO !-jld ec_conser IF (if_ebil >= 1) THEN ztit='after physic' - CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, dtime & - , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs, pplay & + CALL diagetpq(airephy, ztit, ip_ebil, 1, 1, pdtphys & + , t_seri, q_seri, ql_seri, qs_seri, u_seri, v_seri, paprs & , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) ! Comme les tendances de la physique sont ajoute dans la dynamique, ! on devrait avoir que la variation d'entalpie par la dynamique @@ -2002,30 +1858,23 @@ ! SORTIES - !IM Interpolation sur les niveaux de pression du NMC - call calcul_STDlev - !cc prw = eau precipitable DO i = 1, klon prw(i) = 0. DO k = 1, llm - prw(i) = prw(i) + & - q_seri(i, k)*(paprs(i, k)-paprs(i, k+1))/RG + prw(i) = prw(i) + q_seri(i, k)*zmasse(i, k) ENDDO ENDDO - !IM initialisation + calculs divers diag AMIP2 - call calcul_divers - ! Convertir les incrementations en tendances DO k = 1, llm DO i = 1, klon - d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / dtime - d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / dtime - d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / dtime - d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / dtime - d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / dtime + d_u(i, k) = ( u_seri(i, k) - u(i, k) ) / pdtphys + d_v(i, k) = ( v_seri(i, k) - v(i, k) ) / pdtphys + d_t(i, k) = ( t_seri(i, k)-t(i, k) ) / pdtphys + d_qx(i, k, ivap) = ( q_seri(i, k) - qx(i, k, ivap) ) / pdtphys + d_qx(i, k, iliq) = ( ql_seri(i, k) - qx(i, k, iliq) ) / pdtphys ENDDO ENDDO @@ -2033,14 +1882,13 @@ DO iq = 3, nq DO k = 1, llm DO i = 1, klon - d_qx(i, k, iq) = ( tr_seri(i, k, iq-2) - qx(i, k, iq) ) / dtime + d_qx(i, k, iq) = (tr_seri(i, k, iq-2) - qx(i, k, iq)) / pdtphys ENDDO ENDDO ENDDO ENDIF ! Sauvegarder les valeurs de t et q a la fin de la physique: - DO k = 1, llm DO i = 1, klon t_ancien(i, k) = t_seri(i, k) @@ -2049,401 +1897,41 @@ ENDDO ! Ecriture des sorties - call write_histhf call write_histday call write_histins ! Si c'est la fin, il faut conserver l'etat de redemarrage - IF (lafin) THEN itau_phy = itau_phy + itap - CALL phyredem ("restartphy.nc", dtime, radpas, & - rlat, rlon, pctsrf, ftsol, ftsoil, & - tslab, seaice, & !IM "slab" ocean - fqsurf, qsol, & + CALL phyredem("restartphy.nc", rlat, rlon, pctsrf, ftsol, & + ftsoil, tslab, seaice, fqsurf, qsol, & fsnow, falbe, falblw, fevap, rain_fall, snow_fall, & solsw, sollwdown, dlw, & radsol, frugs, agesno, & - zmea, zstd, zsig, zgam, zthe, zpic, zval, rugoro, & + zmea, zstd, zsig, zgam, zthe, zpic, zval, & t_ancien, q_ancien, rnebcon, ratqs, clwcon, run_off_lic_0) ENDIF contains - subroutine calcul_STDlev - - ! From phylmd/calcul_STDlev.h, v 1.1 2005/05/25 13:10:09 - - !IM on initialise les champs en debut du jour ou du mois - - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, tsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, usumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, wsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, phisumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, qsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, rhsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, uvsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vqsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vTsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, wqsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, vphisumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, wTsumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, u2sumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, v2sumSTD) - CALL ini_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, & - tnondef, T2sumSTD) - - !IM on interpole sur les niveaux STD de pression a chaque pas de - !temps de la physique - - DO k=1, nlevSTD - - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - t_seri, tlevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - u_seri, ulevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - v_seri, vlevSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=paprs(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., zx_tmp_fi3d, rlevSTD(k), & - omega, wlevSTD(:, k)) - - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zphi/RG, philevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - qx(:, :, ivap), qlevSTD(:, k)) - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_rh*100., rhlevSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=u_seri(i, l)*v_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, uvSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*q_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, vqSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*t_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, vTSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=omega(i, l)*qx(i, l, ivap) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, wqSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*zphi(i, l)/RG - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, vphiSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=omega(i, l)*t_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, wTSTD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=u_seri(i, l)*u_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, u2STD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=v_seri(i, l)*v_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, v2STD(:, k)) - - DO l=1, llm - DO i=1, klon - zx_tmp_fi3d(i, l)=t_seri(i, l)*t_seri(i, l) - ENDDO !i - ENDDO !l - CALL plevel(klon, llm, .true., pplay, rlevSTD(k), & - zx_tmp_fi3d, T2STD(:, k)) - - ENDDO !k=1, nlevSTD - - !IM on somme les valeurs definies a chaque pas de temps de la physique ou - !IM toutes les 6 heures - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.TRUE. - CALL undefSTD(nlevSTD, itap, tlevSTD, & - ecrit_hf, & - oknondef, tnondef, tsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, ulevSTD, & - ecrit_hf, & - oknondef, tnondef, usumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vlevSTD, & - ecrit_hf, & - oknondef, tnondef, vsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, wlevSTD, & - ecrit_hf, & - oknondef, tnondef, wsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, philevSTD, & - ecrit_hf, & - oknondef, tnondef, phisumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, qlevSTD, & - ecrit_hf, & - oknondef, tnondef, qsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, rhlevSTD, & - ecrit_hf, & - oknondef, tnondef, rhsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, uvSTD, & - ecrit_hf, & - oknondef, tnondef, uvsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vqSTD, & - ecrit_hf, & - oknondef, tnondef, vqsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vTSTD, & - ecrit_hf, & - oknondef, tnondef, vTsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, wqSTD, & - ecrit_hf, & - oknondef, tnondef, wqsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, vphiSTD, & - ecrit_hf, & - oknondef, tnondef, vphisumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, wTSTD, & - ecrit_hf, & - oknondef, tnondef, wTsumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, u2STD, & - ecrit_hf, & - oknondef, tnondef, u2sumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, v2STD, & - ecrit_hf, & - oknondef, tnondef, v2sumSTD) - - oknondef(1:klon, 1:nlevSTD, 1:nout)=.FALSE. - CALL undefSTD(nlevSTD, itap, T2STD, & - ecrit_hf, & - oknondef, tnondef, T2sumSTD) - - !IM on moyenne a la fin du jour ou du mois - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, tsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, usumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, wsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, phisumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, qsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, rhsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, uvsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vqsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vTsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, wqsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, vphisumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, wTsumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, u2sumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, v2sumSTD) - - CALL moy_undefSTD(nlevSTD, itap, & - ecrit_day, ecrit_mth, ecrit_hf2mth, & - tnondef, T2sumSTD) - - !IM interpolation a chaque pas de temps du SWup(clr) et - !SWdn(clr) a 200 hPa - - CALL plevel(klon, klevp1, .true., paprs, 20000., & - swdn0, SWdn200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - swdn, SWdn200) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - swup0, SWup200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - swup, SWup200) - - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwdn0, LWdn200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwdn, LWdn200) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwup0, LWup200clr) - CALL plevel(klon, klevp1, .false., paprs, 20000., & - lwup, LWup200) - - end SUBROUTINE calcul_STDlev - - !**************************************************** - - SUBROUTINE calcul_divers - - ! From phylmd/calcul_divers.h, v 1.1 2005/05/25 13:10:09 - - ! initialisations diverses au "debut" du mois - - IF(MOD(itap, ecrit_mth) == 1) THEN - DO i=1, klon - nday_rain(i)=0. - ENDDO - ENDIF - - IF(MOD(itap, ecrit_day) == 0) THEN - !IM calcul total_rain, nday_rain - DO i = 1, klon - total_rain(i)=rain_fall(i)+snow_fall(i) - IF(total_rain(i).GT.0.) nday_rain(i)=nday_rain(i)+1. - ENDDO - ENDIF - - End SUBROUTINE calcul_divers - - !*********************************************** - subroutine write_histday - ! From phylmd/write_histday.h, v 1.3 2005/05/25 13:10:09 + use gr_phy_write_3d_m, only: gr_phy_write_3d + integer itau_w ! pas de temps ecriture - if (ok_journe) THEN - - ndex2d = 0 - ndex3d = 0 - - ! Champs 2D: + !------------------------------------------------ + if (ok_journe) THEN itau_w = itau_phy + itap - - ! FIN ECRITURE DES CHAMPS 3D - + if (nq <= 4) then + call histwrite(nid_day, "Sigma_O3_Royer", itau_w, & + gr_phy_write_3d(wo) * 1e3) + ! (convert "wo" from kDU to DU) + end if if (ok_sync) then call histsync(nid_day) endif - ENDIF End subroutine write_histday @@ -2454,10 +1942,7 @@ ! From phylmd/write_histhf.h, v 1.5 2005/05/25 13:10:09 - ndex2d = 0 - ndex3d = 0 - - itau_w = itau_phy + itap + !------------------------------------------------ call write_histhf3d @@ -2474,247 +1959,225 @@ ! From phylmd/write_histins.h, v 1.2 2005/05/25 13:10:09 real zout + integer itau_w ! pas de temps ecriture !-------------------------------------------------- IF (ok_instan) THEN - - ndex2d = 0 - ndex3d = 0 - ! Champs 2D: - zsto = dtime * ecrit_ins - zout = dtime * ecrit_ins + zsto = pdtphys * ecrit_ins + zout = pdtphys * ecrit_ins itau_w = itau_phy + itap i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), pphis, zx_tmp_2d) - CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "phis", itau_w, zx_tmp_2d) i = NINT(zout/zsto) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), airephy, zx_tmp_2d) - CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "aire", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = paprs(i, 1) ENDDO CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "psol", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_fall(i) + snow_fall(i) ENDDO CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "precip", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_lsc(i) + snow_lsc(i) ENDDO CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "plul", itau_w, zx_tmp_2d) DO i = 1, klon zx_tmp_fi2d(i) = rain_con(i) + snow_con(i) ENDDO CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "pluc", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxtsol, zx_tmp_2d) - CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "tsol", itau_w, zx_tmp_2d) !ccIM CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zt2m, zx_tmp_2d) - CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "t2m", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zq2m, zx_tmp_2d) - CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "q2m", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zu10m, zx_tmp_2d) - CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "u10m", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zv10m, zx_tmp_2d) - CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "v10m", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), snow_fall, zx_tmp_2d) - CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "snow", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragm, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "cdrm", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), cdragh, zx_tmp_2d) - CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "cdrh", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), toplw, zx_tmp_2d) - CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "topl", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), evap, zx_tmp_2d) - CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "evap", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), solsw, zx_tmp_2d) - CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "sols", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollw, zx_tmp_2d) - CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "soll", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sollwdown, zx_tmp_2d) - CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "solldown", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), bils, zx_tmp_2d) - CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "bils", itau_w, zx_tmp_2d) zx_tmp_fi2d(1:klon)=-1*sens(1:klon) ! CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), sens, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) - CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "sens", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), fder, zx_tmp_2d) - CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "fder", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_oce), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "dtsvdfo", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_ter), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "dtsvdft", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_lic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "dtsvdfg", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), d_ts(1, is_sic), zx_tmp_2d) - CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "dtsvdfi", itau_w, zx_tmp_2d) DO nsrf = 1, nbsrf !XXX zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf)*100. CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "pourc_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = pctsrf( 1 : klon, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "fract_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxt( 1 : klon, 1, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "sens_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxlat( 1 : klon, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "lat_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = ftsol( 1 : klon, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "tsol_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxu( 1 : klon, 1, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "taux_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = fluxv( 1 : klon, 1, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "tauy_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = frugs( 1 : klon, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "rugs_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) zx_tmp_fi2d(1 : klon) = falbe( 1 : klon, nsrf) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zx_tmp_fi2d, zx_tmp_2d) CALL histwrite(nid_ins, "albe_"//clnsurf(nsrf), itau_w, & - zx_tmp_2d, iim*(jjm + 1), ndex2d) + zx_tmp_2d) END DO CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsol, zx_tmp_2d) - CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "albs", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), albsollw, zx_tmp_2d) - CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "albslw", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), zxrugs, zx_tmp_2d) - CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "rugs", itau_w, zx_tmp_2d) !IM cf. AM 081204 BEG !HBTM2 CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblh, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "s_pblh", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_pblt, zx_tmp_2d) - CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "s_pblt", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_lcl, zx_tmp_2d) - CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d, iim*(jjm + 1), ndex2d) + CALL histwrite(nid_ins, "s_lcl", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_capCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_capCL", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_oliqCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_oliqCL", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_cteiCL, zx_tmp_2d) - CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_cteiCL", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_therm, zx_tmp_2d) - CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_therm", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb1, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_trmb1", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb2, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_trmb2", itau_w, zx_tmp_2d) CALL gr_fi_ecrit(1, klon, iim, (jjm + 1), s_trmb3, zx_tmp_2d) - CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d, iim*(jjm + 1), & - ndex2d) + CALL histwrite(nid_ins, "s_trmb3", itau_w, zx_tmp_2d) !IM cf. AM 081204 END ! Champs 3D: CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "temp", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "vitu", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d) - CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "vitv", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), zphi, zx_tmp_3d) - CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "geop", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), pplay, zx_tmp_3d) - CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "pres", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_t_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "dtvdf", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), d_q_vdf, zx_tmp_3d) - CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_ins, "dqvdf", itau_w, zx_tmp_3d) if (ok_sync) then call histsync(nid_ins) @@ -2729,32 +2192,31 @@ ! From phylmd/write_histhf3d.h, v 1.2 2005/05/25 13:10:09 - ndex2d = 0 - ndex3d = 0 + integer itau_w ! pas de temps ecriture + + !------------------------------------------------------- itau_w = itau_phy + itap ! Champs 3D: CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), t_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_hf3d, "temp", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), qx(1, 1, ivap), zx_tmp_3d) - CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_hf3d, "ovap", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), u_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_hf3d, "vitu", itau_w, zx_tmp_3d) CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), v_seri, zx_tmp_3d) - CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d, & - iim*(jjm + 1)*llm, ndex3d) + CALL histwrite(nid_hf3d, "vitv", itau_w, zx_tmp_3d) - CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), & - zx_tmp_3d) - CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d, iim*(jjm + 1)*llm, ndex3d) + if (nbtr >= 3) then + CALL gr_fi_ecrit(llm, klon, iim, (jjm + 1), tr_seri(1, 1, 3), & + zx_tmp_3d) + CALL histwrite(nid_hf3d, "O3", itau_w, zx_tmp_3d) + end if if (ok_sync) then call histsync(nid_hf3d) @@ -2764,39 +2226,4 @@ END SUBROUTINE physiq - !**************************************************** - - FUNCTION qcheck(klon, klev, paprs, q, ql, aire) - - ! From phylmd/physiq.F, v 1.22 2006/02/20 09:38:28 - - use YOMCST - IMPLICIT none - - ! Calculer et imprimer l'eau totale. A utiliser pour verifier - ! la conservation de l'eau - - INTEGER klon, klev - REAL, intent(in):: paprs(klon, klev+1) - real q(klon, klev), ql(klon, klev) - REAL aire(klon) - REAL qtotal, zx, qcheck - INTEGER i, k - - zx = 0.0 - DO i = 1, klon - zx = zx + aire(i) - ENDDO - qtotal = 0.0 - DO k = 1, klev - DO i = 1, klon - qtotal = qtotal + (q(i, k)+ql(i, k)) * aire(i) & - *(paprs(i, k)-paprs(i, k+1))/RG - ENDDO - ENDDO - - qcheck = qtotal/zx - - END FUNCTION qcheck - end module physiq_m