--- trunk/phylmd/Interface_surf/calcul_fluxs.f 2014/09/04 10:05:52 104 +++ trunk/Sources/phylmd/Interface_surf/calcul_fluxs.f 2015/09/29 19:48:59 171 @@ -4,8 +4,8 @@ contains - SUBROUTINE calcul_fluxs(nisurf, dtime, tsurf, p1lay, cal, beta, coef1lay, & - ps, qsurf, radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, petAcoef, & + SUBROUTINE calcul_fluxs(dtime, tsurf, p1lay, cal, beta, coef1lay, ps, & + qsurf, radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, petAcoef, & peqAcoef, petBcoef, peqBcoef, tsurf_new, evap, fluxlat, fluxsens, & dflux_s, dflux_l) @@ -15,14 +15,12 @@ ! L. Fairhead April 2000 USE abort_gcm_m, ONLY: abort_gcm - USE indicesol, ONLY: is_ter USE fcttre, ONLY: dqsatl, dqsats, foede, foeew, qsatl, qsats, thermcep - USE interface_surf, ONLY: run_off + USE indicesol, ONLY: is_ter use nr_util, only: assert_eq USE suphec_m, ONLY: rcpd, rd, retv, rkappa, rlstt, rlvtt, rtt USE yoethf_m, ONLY: r2es, r5ies, r5les, rvtmp2 - integer, intent(IN):: nisurf ! surface a traiter real, intent(IN):: dtime real, intent(IN):: tsurf(:) ! (knon) temperature de surface real, intent(IN):: p1lay(:) ! (knon) pression 1er niveau (milieu de couche) @@ -42,31 +40,27 @@ ! coefficients A de la résolution de la couche limite pour t et q real, intent(IN):: petBcoef(:), peqBcoef(:) ! (knon) - ! petBcoef coeff. B de la resolution de la CL pour t - ! peqBcoef coeff. B de la resolution de la CL pour q + ! coeff. B de la resolution de la CL pour t et q real, intent(OUT):: tsurf_new(:) ! (knon) température au sol - real, intent(OUT):: evap(:), fluxlat(:), fluxsens(:) ! (knon) - ! fluxlat flux de chaleur latente - ! fluxsens flux de chaleur sensible + real, intent(OUT):: evap(:) ! (knon) + + real, intent(OUT):: fluxlat(:), fluxsens(:) ! (knon) + ! flux de chaleur latente et sensible + real, intent(OUT):: dflux_s(:), dflux_l(:) ! (knon) - ! Dérivées des flux dF/dTs (W m-2 K-1) - ! dflux_s derivee du flux de chaleur sensible / Ts - ! dflux_l derivee du flux de chaleur latente / Ts + ! dérivées des flux de chaleurs sensible et latente par rapport à + ! Ts (W m-2 K-1) ! Local: integer i - real, dimension(size(ps)) :: zx_mh, zx_nh, zx_oh - real, dimension(size(ps)) :: zx_mq, zx_nq, zx_oq - real, dimension(size(ps)) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef - real, dimension(size(ps)) :: zx_sl, zx_k1 - real, dimension(size(ps)) :: zx_q_0 , d_ts - logical zdelta - real zcvm5, zx_qs, zcor, zx_dq_s_dh - real :: bilan_f, fq_fonte - REAL :: subli, fsno - REAL :: qsat_new, q1_new integer knon ! nombre de points a traiter + real, dimension(size(ps)):: mh, oh, mq, nq, oq + real, dimension(size(ps)):: dq_s_dt, coef + real qsat(size(ps)) ! qsat en kg/kg + real sl(size(ps)) ! chaleur latente d'evaporation ou de sublimation + logical delta + real zcor real, parameter:: t_grnd = 271.35, t_coup = 273.15 !--------------------------------------------------------------------- @@ -78,109 +72,56 @@ size(evap), size(fluxlat), size(fluxsens), size(dflux_s), & size(dflux_l)/), "calcul_fluxs knon") - if (size(run_off) /= knon .AND. nisurf == is_ter) then - print *, 'Bizarre, le nombre de points continentaux' - print *, 'a change entre deux appels. J''arrete.' - call abort_gcm('calcul_fluxs', 'Pb run_off', 1) - endif - ! Traitement humidite du sol - evap = 0. - fluxsens=0. - fluxlat=0. - dflux_s = 0. - dflux_l = 0. - - ! zx_qs = qsat en kg/kg - - DO i = 1, knon - zx_pkh(i) = (ps(i)/ps(i))**RKAPPA - IF (thermcep) THEN - zdelta= rtt >= tsurf(i) - zcvm5 = merge(R5IES*RLSTT, R5LES*RLVTT, zdelta) - zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q1lay(i)) - zx_qs= r2es * FOEEW(tsurf(i), zdelta)/ps(i) - zx_qs=MIN(0.5, zx_qs) - zcor=1./(1.-retv*zx_qs) - zx_qs=zx_qs*zcor - zx_dq_s_dh = FOEDE(tsurf(i), zdelta, zcvm5, zx_qs, zcor) & - /RLVTT / zx_pkh(i) - ELSE - IF (tsurf(i).LT.t_coup) THEN - zx_qs = qsats(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsats(tsurf(i), zx_qs)/RLVTT & - / zx_pkh(i) + IF (thermcep) THEN + DO i = 1, knon + delta = rtt >= tsurf(i) + qsat(i) = MIN(0.5, r2es * FOEEW(tsurf(i), delta) / ps(i)) + zcor = 1. / (1. - retv * qsat(i)) + qsat(i) = qsat(i) * zcor + dq_s_dt(i) = RCPD * FOEDE(tsurf(i), delta, merge(R5IES * RLSTT, & + R5LES * RLVTT, delta) / RCPD / (1. + RVTMP2 * q1lay(i)), & + qsat(i), zcor) / RLVTT + ENDDO + ELSE + DO i = 1, knon + IF (tsurf(i) < t_coup) THEN + qsat(i) = qsats(tsurf(i)) / ps(i) + dq_s_dt(i) = RCPD * dqsats(tsurf(i), qsat(i)) / RLVTT ELSE - zx_qs = qsatl(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsatl(tsurf(i), zx_qs)/RLVTT & - / zx_pkh(i) + qsat(i) = qsatl(tsurf(i)) / ps(i) + dq_s_dt(i) = RCPD * dqsatl(tsurf(i), qsat(i)) / RLVTT ENDIF - ENDIF - zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh - zx_qsat(i) = zx_qs - zx_coef(i) = coef1lay(i) & - * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) & - * p1lay(i)/(RD*t1lay(i)) - - ENDDO - - ! === Calcul de la temperature de surface === - - ! zx_sl = chaleur latente d'evaporation ou de sublimation - - do i = 1, knon - zx_sl(i) = RLVTT - if (tsurf(i) .LT. RTT) zx_sl(i) = RLSTT - zx_k1(i) = zx_coef(i) - enddo - - do i = 1, knon - ! Q - zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) - zx_mq(i) = beta(i) * zx_k1(i) * & - (peqAcoef(i) - zx_qsat(i) & - + zx_dq_s_dt(i) * tsurf(i)) & - / zx_oq(i) - zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) & - / zx_oq(i) - - ! H - zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) - zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) - zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) - - ! Tsurface - tsurf_new(i) = (tsurf(i) + cal(i)/(RCPD * zx_pkh(i)) * dtime * & - (radsol(i) + zx_mh(i) + zx_sl(i) * zx_mq(i)) & - + dif_grnd(i) * t_grnd * dtime)/ & - ( 1. - dtime * cal(i)/(RCPD * zx_pkh(i)) * ( & - zx_nh(i) + zx_sl(i) * zx_nq(i)) & - + dtime * dif_grnd(i)) - - - ! Y'a-t-il fonte de neige? - - ! fonte_neige = (nisurf /= is_oce) .AND. & - ! & (snow(i) > epsfra .OR. nisurf == is_sic .OR. nisurf == is_lic) & - ! & .AND. (tsurf_new(i) >= RTT) - ! if (fonte_neige) tsurf_new(i) = RTT - d_ts(i) = tsurf_new(i) - tsurf(i) - ! zx_h_ts(i) = tsurf_new(i) * RCPD * zx_pkh(i) - ! zx_q_0(i) = zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) - !== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas - !== flux_t est le flux de cpt (energie sensible): j/(m**2 s) - evap(i) = - zx_mq(i) - zx_nq(i) * tsurf_new(i) - fluxlat(i) = - evap(i) * zx_sl(i) - fluxsens(i) = zx_mh(i) + zx_nh(i) * tsurf_new(i) - ! Derives des flux dF/dTs (W m-2 K-1): - dflux_s(i) = zx_nh(i) - dflux_l(i) = (zx_sl(i) * zx_nq(i)) - ! Nouvelle valeure de l'humidite au dessus du sol - qsat_new=zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) - q1_new = peqAcoef(i) - peqBcoef(i)*evap(i)*dtime - qsurf(i)=q1_new*(1.-beta(i)) + beta(i)*qsat_new - ENDDO + ENDDO + ENDIF + + coef = coef1lay * (1. + SQRT(u1lay**2 + v1lay**2)) * p1lay / (RD * t1lay) + sl = merge(RLSTT, RLVTT, tsurf < RTT) + + ! Q + oq = 1. - (beta * coef * peqBcoef * dtime) + mq = beta * coef * (peqAcoef - qsat + dq_s_dt * tsurf) / oq + nq = beta * coef * (- 1. * dq_s_dt) / oq + + ! H + oh = 1. - (coef * petBcoef * dtime) + mh = coef * petAcoef / oh + dflux_s = - (coef * RCPD)/ oh + + ! Tsurface + tsurf_new = (tsurf + cal / RCPD * dtime * (radsol + mh + sl * mq) & + + dif_grnd * t_grnd * dtime) / (1. - dtime * cal / RCPD * (dflux_s & + + sl * nq) + dtime * dif_grnd) + + evap = - mq - nq * tsurf_new + fluxlat = - evap * sl + fluxsens = mh + dflux_s * tsurf_new + dflux_l = sl * nq + + ! Nouvelle valeur de l'humidité au dessus du sol : + qsurf = (peqAcoef - peqBcoef * evap * dtime) * (1. - beta) + beta * (qsat & + + dq_s_dt * (tsurf_new - tsurf)) END SUBROUTINE calcul_fluxs