--- trunk/Sources/phylmd/clqh.f 2015/07/08 17:03:45 155 +++ trunk/phylmd/Interface_surf/clqh.f 2018/07/26 16:45:51 298 @@ -4,61 +4,66 @@ contains - SUBROUTINE clqh(dtime, itime, jour, debut, rlat, knon, nisurf, knindex, & - pctsrf, tsoil, qsol, rmu0, co2_ppm, rugos, rugoro, u1lay, v1lay, coef, & - t, q, ts, paprs, pplay, delp, radsol, albedo, snow, qsurf, & - precip_rain, precip_snow, fder, swnet, fluxlat, pctsrf_new, agesno, & - d_t, d_q, d_ts, z0_new, flux_t, flux_q, dflux_s, dflux_l, fqcalving, & - ffonte, run_off_lic_0, flux_o, flux_g) + SUBROUTINE clqh(julien, debut, nisurf, knindex, tsoil, qsol, rmu0, rugos, & + rugoro, u1lay, v1lay, coef, tq_cdrag, t, q, ts, paprs, pplay, delp, & + radsol, albedo, snow, qsurf, precip_rain, precip_snow, fluxlat, & + pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, & + dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0) ! Author: Z. X. Li (LMD/CNRS) - ! Date: 1993/08/18 + ! Date: 1993 Aug. 18th ! Objet : diffusion verticale de "q" et de "h" - USE conf_phys_m, ONLY: iflag_pbl - USE dimens_m, ONLY: iim, jjm + use climb_hq_down_m, only: climb_hq_down + use climb_hq_up_m, only: climb_hq_up + use comconst, only: dtphys USE dimphy, ONLY: klev, klon - USE dimsoil, ONLY: nsoilmx - USE indicesol, ONLY: is_ter, nbsrf USE interfsurf_hq_m, ONLY: interfsurf_hq - USE suphec_m, ONLY: rcpd, rd, rg, rkappa + USE suphec_m, ONLY: rkappa - REAL, intent(in):: dtime ! intervalle du temps (s) - integer, intent(in):: itime - integer, intent(in):: jour ! jour de l'annee en cours + integer, intent(in):: julien ! jour de l'annee en cours logical, intent(in):: debut - real, intent(in):: rlat(klon) - INTEGER, intent(in):: knon - integer nisurf + integer, intent(in):: nisurf integer, intent(in):: knindex(:) ! (knon) - real, intent(in):: pctsrf(klon, nbsrf) - REAL tsoil(klon, nsoilmx) + REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) - REAL, intent(inout):: qsol(klon) + REAL, intent(inout):: qsol(:) ! (knon) ! column-density of water in soil, in kg m-2 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, intent(in):: co2_ppm ! taux CO2 atmosphere - real rugos(klon) ! rugosite - REAL rugoro(klon) - REAL u1lay(klon) ! vitesse u de la 1ere couche (m / s) - REAL v1lay(klon) ! vitesse v de la 1ere couche (m / s) + real, intent(in):: rugos(:) ! (knon) rugosite + REAL, intent(in):: rugoro(:) ! (knon) - REAL, intent(in):: coef(:, :) ! (knon, klev) + REAL, intent(in):: u1lay(:), v1lay(:) ! (knon) + ! vitesse de la 1ere couche (m / s) + + REAL, intent(in):: coef(:, 2:) ! (knon, 2:klev) ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement - ! du vent (dV / dz). La premiere valeur indique la valeur de Cdrag - ! (sans unite). + ! du vent (dV / dz) + + REAL, intent(in):: tq_cdrag(:) ! (knon) sans unite + + REAL, intent(in):: t(:, :) ! (knon, klev) temperature (K) + REAL, intent(in):: q(:, :) ! (knon, klev) humidite specifique (kg / kg) + REAL, intent(in):: ts(:) ! (knon) temperature du sol (K) + + REAL, intent(in):: paprs(:, :) ! (knon, klev + 1) + ! pression a inter-couche (Pa) + + REAL, intent(in):: pplay(:, :) ! (knon, klev) + ! pression au milieu de couche (Pa) + + REAL, intent(in):: delp(:, :) ! (knon, klev) + ! epaisseur de couche en pression (Pa) + + REAL, intent(in):: radsol(:) ! (knon) + ! rayonnement net au sol (Solaire + IR) W / m2 - REAL t(klon, klev) ! temperature (K) - REAL q(klon, klev) ! humidite specifique (kg / kg) - REAL, intent(in):: ts(klon) ! temperature du sol (K) - REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) - REAL pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL delp(klon, klev) ! epaisseur de couche en pression (Pa) - REAL radsol(klon) ! ray. net au sol (Solaire+IR) W / m2 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface - REAL snow(klon) ! hauteur de neige - REAL qsurf(klon) ! humidite de l'air au dessus de la surface + REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige + + REAL, intent(out):: qsurf(:) ! (knon) + ! humidite de l'air au dessus de la surface real, intent(in):: precip_rain(klon) ! liquid water mass flux (kg / m2 / s), positive down @@ -66,248 +71,58 @@ real, intent(in):: precip_snow(klon) ! solid water mass flux (kg / m2 / s), positive down - real, intent(inout):: fder(klon) - real swnet(klon) - real fluxlat(klon) - real pctsrf_new(klon, nbsrf) - REAL agesno(klon) - REAL d_t(klon, klev) ! incrementation de "t" - REAL d_q(klon, klev) ! incrementation de "q" - REAL, intent(out):: d_ts(:) ! (knon) incrementation de "ts" - real z0_new(klon) - REAL flux_t(klon, klev) ! (diagnostic) flux de la chaleur - ! sensible, flux de Cp*T, positif vers - ! le bas: j / (m**2 s) c.a.d.: W / m2 - REAL flux_q(klon, klev) ! flux de la vapeur d'eau:kg / (m**2 s) - REAL dflux_s(klon) ! derivee du flux sensible dF / dTs - REAL dflux_l(klon) ! derivee du flux latent dF / dTs + real, intent(out):: fluxlat(:) ! (knon) + real, intent(in):: pctsrf_new_sic(:) ! (klon) + REAL, intent(inout):: agesno(:) ! (knon) + REAL, intent(out):: d_t(:, :) ! (knon, klev) incrementation de "t" + REAL, intent(out):: d_q(:, :) ! (knon, klev) incrementation de "q" + REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature + real, intent(out):: z0_new(:) ! (knon) + + REAL, intent(out):: flux_t(:) ! (knon) + ! (diagnostic) flux de chaleur sensible (Cp T) à la surface, + ! positif vers le bas, W / m2 + + REAL, intent(out):: flux_q(:) ! (knon) + ! flux de la vapeur d'eau à la surface, en kg / (m**2 s) + REAL, intent(out):: dflux_s(:) ! (knon) derivee du flux sensible dF / dTs + REAL, intent(out):: dflux_l(:) ! (knon) derivee du flux latent dF / dTs + + REAL, intent(out):: fqcalving(:) ! (knon) ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la ! hauteur de neige, en kg / m2 / s - REAL fqcalving(klon) - ! Flux thermique utiliser pour fondre la neige REAL ffonte(klon) + ! Flux thermique utiliser pour fondre la neige REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent - !IM "slab" ocean - - REAL, intent(out):: flux_o(klon) ! flux entre l'ocean et l'atmosphere W / m2 - - REAL, intent(out):: flux_g(klon) - ! flux entre l'ocean et la glace de mer W / m2 - ! Local: - REAL evap(klon) ! evaporation au sol - - INTEGER i, k - REAL zx_cq(klon, klev) - REAL zx_dq(klon, klev) - REAL zx_ch(klon, klev) - REAL zx_dh(klon, klev) - REAL zx_buf1(klon) - REAL zx_buf2(klon) - REAL zx_coef(klon, klev) - REAL local_h(klon, klev) ! enthalpie potentielle - REAL local_q(klon, klev) - REAL local_ts(klon) - REAL psref(klon) ! pression de reference pour temperature potent. - REAL zx_pkh(klon, klev), zx_pkf(klon, klev) - - ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre - REAL gamq(klon, 2:klev) - ! contre-gradient pour la chaleur sensible: Kelvin / metre - REAL gamt(klon, 2:klev) - REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev) - REAL zdelz - - real zlev1(klon) - real temp_air(klon), spechum(klon) - real epot_air(klon), ccanopy(klon) - real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon) - real petBcoef(klon), peqBcoef(klon) - real swdown(klon) - real p1lay(klon) - - real fluxsens(klon) - real tsurf_new(knon) - real zzpk + INTEGER k + REAL evap(size(knindex)) ! (knon) evaporation au sol + REAL, dimension(size(knindex), klev):: cq, dq, ch, dh ! (knon, klev) + REAL pkf(size(knindex), klev) ! (knon, klev) + real tsurf_new(size(knindex)) ! (knon) !---------------------------------------------------------------- - if (iflag_pbl == 1) then - do k = 3, klev - do i = 1, knon - gamq(i, k)= 0.0 - gamt(i, k)= - 1.0e-03 - enddo - enddo - do i = 1, knon - gamq(i, 2) = 0.0 - gamt(i, 2) = - 2.5e-03 - enddo - else - do k = 2, klev - do i = 1, knon - gamq(i, k) = 0.0 - gamt(i, k) = 0.0 - enddo - enddo - endif - - DO i = 1, knon - psref(i) = paprs(i, 1) !pression de reference est celle au sol - local_ts(i) = ts(i) - ENDDO - DO k = 1, klev - DO i = 1, knon - zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA - zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA - local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k) - local_q(i, k) = q(i, k) - ENDDO - ENDDO - - ! Convertir les coefficients en variables convenables au calcul: - - DO k = 2, klev - DO i = 1, knon - zx_coef(i, k) = coef(i, k)*RG / (pplay(i, k - 1) - pplay(i, k)) & - *(paprs(i, k)*2 / (t(i, k)+t(i, k - 1)) / RD)**2 - zx_coef(i, k) = zx_coef(i, k) * dtime*RG - ENDDO - ENDDO - - ! Preparer les flux lies aux contre-gardients - - DO k = 2, klev - DO i = 1, knon - zdelz = RD * (t(i, k - 1)+t(i, k)) / 2.0 / RG / paprs(i, k) & - *(pplay(i, k - 1) - pplay(i, k)) - z_gamaq(i, k) = gamq(i, k) * zdelz - z_gamah(i, k) = gamt(i, k) * zdelz *RCPD * zx_pkh(i, k) - ENDDO - ENDDO - DO i = 1, knon - zx_buf1(i) = zx_coef(i, klev) + delp(i, klev) - zx_cq(i, klev) = (local_q(i, klev)*delp(i, klev) & - - zx_coef(i, klev)*z_gamaq(i, klev)) / zx_buf1(i) - zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i) - - zzpk=(pplay(i, klev) / psref(i))**RKAPPA - zx_buf2(i) = zzpk*delp(i, klev) + zx_coef(i, klev) - zx_ch(i, klev) = (local_h(i, klev)*zzpk*delp(i, klev) & - - zx_coef(i, klev)*z_gamah(i, klev)) / zx_buf2(i) - zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i) - ENDDO - DO k = klev - 1, 2, - 1 - DO i = 1, knon - zx_buf1(i) = delp(i, k)+zx_coef(i, k) & - +zx_coef(i, k+1)*(1. - zx_dq(i, k+1)) - zx_cq(i, k) = (local_q(i, k)*delp(i, k) & - +zx_coef(i, k+1)*zx_cq(i, k+1) & - +zx_coef(i, k+1)*z_gamaq(i, k+1) & - - zx_coef(i, k)*z_gamaq(i, k)) / zx_buf1(i) - zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i) - - zzpk=(pplay(i, k) / psref(i))**RKAPPA - zx_buf2(i) = zzpk*delp(i, k)+zx_coef(i, k) & - +zx_coef(i, k+1)*(1. - zx_dh(i, k+1)) - zx_ch(i, k) = (local_h(i, k)*zzpk*delp(i, k) & - +zx_coef(i, k+1)*zx_ch(i, k+1) & - +zx_coef(i, k+1)*z_gamah(i, k+1) & - - zx_coef(i, k)*z_gamah(i, k)) / zx_buf2(i) - zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i) - ENDDO - ENDDO - - DO i = 1, knon - zx_buf1(i) = delp(i, 1) + zx_coef(i, 2)*(1. - zx_dq(i, 2)) - zx_cq(i, 1) = (local_q(i, 1)*delp(i, 1) & - +zx_coef(i, 2)*(z_gamaq(i, 2)+zx_cq(i, 2))) & - / zx_buf1(i) - zx_dq(i, 1) = - 1. * RG / zx_buf1(i) - - zzpk=(pplay(i, 1) / psref(i))**RKAPPA - zx_buf2(i) = zzpk*delp(i, 1) + zx_coef(i, 2)*(1. - zx_dh(i, 2)) - zx_ch(i, 1) = (local_h(i, 1)*zzpk*delp(i, 1) & - +zx_coef(i, 2)*(z_gamah(i, 2)+zx_ch(i, 2))) & - / zx_buf2(i) - zx_dh(i, 1) = - 1. * RG / zx_buf2(i) - ENDDO - - ! Appel a interfsurf (appel generique) routine d'interface avec la surface - - ! initialisation - petAcoef =0. - peqAcoef = 0. - petBcoef =0. - peqBcoef = 0. - p1lay =0. - - petAcoef(1:knon) = zx_ch(1:knon, 1) - peqAcoef(1:knon) = zx_cq(1:knon, 1) - petBcoef(1:knon) = zx_dh(1:knon, 1) - peqBcoef(1:knon) = zx_dq(1:knon, 1) - tq_cdrag(1:knon) =coef(:knon, 1) - temp_air(1:knon) =t(1:knon, 1) - epot_air(1:knon) =local_h(1:knon, 1) - spechum(1:knon)=q(1:knon, 1) - p1lay(1:knon) = pplay(1:knon, 1) - zlev1(1:knon) = delp(1:knon, 1) - - if(nisurf == is_ter) THEN - swdown(:knon) = swnet(:knon) / (1 - albedo) - else - swdown(:knon) = swnet(:knon) - endif - ccanopy = co2_ppm - - CALL interfsurf_hq(itime, dtime, jour, rmu0, nisurf, knon, knindex, & - pctsrf, rlat, debut, nsoilmx, tsoil, qsol, u1lay, v1lay, temp_air, & - spechum, tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & - precip_rain, precip_snow, fder, rugos, rugoro, snow, qsurf, & - ts(:knon), p1lay, psref, radsol, evap, fluxsens, fluxlat, dflux_l, & - dflux_s, tsurf_new, albedo, z0_new, pctsrf_new, agesno, fqcalving, & - ffonte, run_off_lic_0, flux_o, flux_g) - - flux_t(:knon, 1) = fluxsens(:knon) - flux_q(:knon, 1) = - evap(:knon) - d_ts = tsurf_new - ts(:knon) - - !==== une fois on a zx_h_ts, on peut faire l'iteration ======== - DO i = 1, knon - local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1)*flux_t(i, 1)*dtime - local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1)*flux_q(i, 1)*dtime - ENDDO - DO k = 2, klev - DO i = 1, knon - local_q(i, k) = zx_cq(i, k) + zx_dq(i, k)*local_q(i, k - 1) - local_h(i, k) = zx_ch(i, k) + zx_dh(i, k)*local_h(i, k - 1) - ENDDO - ENDDO - - !== flux_q est le flux de vapeur d'eau: kg / (m**2 s) positive vers bas - !== flux_t est le flux de cpt (energie sensible): j / (m**2 s) - DO k = 2, klev - DO i = 1, knon - flux_q(i, k) = (zx_coef(i, k) / RG / dtime) & - * (local_q(i, k) - local_q(i, k - 1)+z_gamaq(i, k)) - flux_t(i, k) = (zx_coef(i, k) / RG / dtime) & - * (local_h(i, k) - local_h(i, k - 1)+z_gamah(i, k)) & - / zx_pkh(i, k) - ENDDO - ENDDO - - ! Calcul tendances - DO k = 1, klev - DO i = 1, knon - d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k) - d_q(i, k) = local_q(i, k) - q(i, k) - ENDDO - ENDDO + forall (k = 1:klev) pkf(:, k) = (paprs(:, 1) / pplay(:, k))**RKAPPA + ! (La pression de r\'ef\'erence est celle au sol.) + + call climb_hq_down(pkf, cq, dq, ch, dh, paprs, pplay, t, coef, dtphys, & + delp, q) + CALL interfsurf_hq(dtphys, julien, rmu0, nisurf, knindex, debut, tsoil, & + qsol, u1lay, v1lay, t(:, 1), q(:, 1), tq_cdrag, ch(:, 1), cq(:, 1), & + dh(:, 1), dq(:, 1), precip_rain, precip_snow, rugos, rugoro, snow, & + qsurf, ts, pplay(:, 1), paprs(:, 1), radsol, evap, flux_t, fluxlat, & + dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, & + fqcalving, ffonte, run_off_lic_0) + flux_q = - evap + d_ts = tsurf_new - ts + call climb_hq_up(d_t, d_q, cq, dq, ch, dh, flux_t, flux_q, dtphys, pkf, t, & + q) END SUBROUTINE clqh