--- trunk/Sources/phylmd/clqh.f 2016/12/07 17:37:21 209 +++ trunk/phylmd/Interface_surf/clqh.f 2018/07/26 13:23:28 295 @@ -4,52 +4,65 @@ contains - SUBROUTINE clqh(dtime, jour, debut, nisurf, knindex, tsoil, qsol, rmu0, & - rugos, rugoro, u1lay, v1lay, coef, t, q, ts, paprs, pplay, delp, & - radsol, albedo, snow, qsurf, precip_rain, precip_snow, fder, fluxlat, & + SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, & + rugos, rugoro, u1lay, v1lay, coef, tq_cdrag, t, q, ts, paprs, pplay, & + delp, radsol, albedo, snow, qsurf, precip_rain, precip_snow, fluxlat, & pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, & dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0) ! Author: Z. X. Li (LMD/CNRS) - ! Date: 1993/08/18 + ! Date: 1993 Aug. 18th ! Objet : diffusion verticale de "q" et de "h" - USE conf_phys_m, ONLY: iflag_pbl + use climb_hq_down_m, only: climb_hq_down USE dimphy, ONLY: klev, klon USE interfsurf_hq_m, ONLY: interfsurf_hq - USE suphec_m, ONLY: rcpd, rd, rg, rkappa + USE suphec_m, ONLY: rcpd REAL, intent(in):: dtime ! intervalle du temps (s) - integer, intent(in):: jour ! jour de l'annee en cours + integer, intent(in):: julien ! jour de l'annee en cours logical, intent(in):: debut integer, intent(in):: nisurf integer, intent(in):: knindex(:) ! (knon) REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) - REAL, intent(inout):: qsol(klon) + REAL, intent(inout):: qsol(:) ! (knon) ! column-density of water in soil, in kg m-2 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - real rugos(klon) ! rugosite - REAL rugoro(klon) - REAL u1lay(klon) ! vitesse u de la 1ere couche (m / s) - REAL v1lay(klon) ! vitesse v de la 1ere couche (m / s) + real, intent(in):: rugos(:) ! (knon) rugosite + REAL, intent(in):: rugoro(:) ! (knon) - REAL, intent(in):: coef(:, :) ! (knon, klev) + REAL, intent(in):: u1lay(:), v1lay(:) ! (knon) + ! vitesse de la 1ere couche (m / s) + + REAL, intent(in):: coef(:, 2:) ! (knon, 2:klev) ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement - ! du vent (dV / dz). La premiere valeur indique la valeur de Cdrag - ! (sans unite). + ! du vent (dV / dz) + + REAL, intent(in):: tq_cdrag(:) ! (knon) sans unite - REAL t(klon, klev) ! temperature (K) - REAL q(klon, klev) ! humidite specifique (kg / kg) + REAL, intent(in):: t(:, :) ! (knon, klev) temperature (K) + REAL, intent(in):: q(:, :) ! (knon, klev) humidite specifique (kg / kg) REAL, intent(in):: ts(:) ! (knon) temperature du sol (K) - REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa) - REAL pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL delp(klon, klev) ! epaisseur de couche en pression (Pa) - REAL radsol(klon) ! ray. net au sol (Solaire + IR) W / m2 + + REAL, intent(in):: paprs(:, :) ! (knon, klev + 1) + ! pression a inter-couche (Pa) + + REAL, intent(in):: pplay(:, :) ! (knon, klev) + ! pression au milieu de couche (Pa) + + REAL, intent(in):: delp(:, :) ! (knon, klev) + ! epaisseur de couche en pression (Pa) + + REAL, intent(in):: radsol(:) ! (knon) + ! rayonnement net au sol (Solaire + IR) W / m2 + REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface - REAL, intent(inout):: snow(klon) ! hauteur de neige - REAL qsurf(klon) ! humidite de l'air au dessus de la surface + REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige + + REAL, intent(out):: qsurf(:) ! (knon) + ! humidite de l'air au dessus de la surface real, intent(in):: precip_rain(klon) ! liquid water mass flux (kg / m2 / s), positive down @@ -57,14 +70,13 @@ real, intent(in):: precip_snow(klon) ! solid water mass flux (kg / m2 / s), positive down - real, intent(inout):: fder(klon) - real fluxlat(klon) + real, intent(out):: fluxlat(:) ! (knon) real, intent(in):: pctsrf_new_sic(:) ! (klon) REAL, intent(inout):: agesno(:) ! (knon) - REAL d_t(klon, klev) ! incrementation de "t" - REAL d_q(klon, klev) ! incrementation de "q" - REAL, intent(out):: d_ts(:) ! (knon) incr\'ementation de "ts" - real z0_new(klon) + REAL, intent(out):: d_t(:, :) ! (knon, klev) incrementation de "t" + REAL, intent(out):: d_q(:, :) ! (knon, klev) incrementation de "q" + REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature + real, intent(out):: z0_new(:) ! (knon) REAL, intent(out):: flux_t(:) ! (knon) ! (diagnostic) flux de chaleur sensible (Cp T) à la surface, @@ -73,201 +85,52 @@ REAL, intent(out):: flux_q(:) ! (knon) ! flux de la vapeur d'eau à la surface, en kg / (m**2 s) - REAL dflux_s(klon) ! derivee du flux sensible dF / dTs - REAL dflux_l(klon) ! derivee du flux latent dF / dTs + REAL, intent(out):: dflux_s(:) ! (knon) derivee du flux sensible dF / dTs + REAL, intent(out):: dflux_l(:) ! (knon) derivee du flux latent dF / dTs + REAL, intent(out):: fqcalving(:) ! (knon) ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la ! hauteur de neige, en kg / m2 / s - REAL fqcalving(klon) - ! Flux thermique utiliser pour fondre la neige REAL ffonte(klon) + ! Flux thermique utiliser pour fondre la neige REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent ! Local: - INTEGER knon + INTEGER k REAL evap(size(knindex)) ! (knon) evaporation au sol - - INTEGER i, k - REAL zx_cq(klon, klev) - REAL zx_dq(klon, klev) - REAL zx_ch(klon, klev) - REAL zx_dh(klon, klev) - REAL zx_buf1(klon) - REAL zx_buf2(klon) - REAL zx_coef(klon, klev) - REAL local_h(klon, klev) ! enthalpie potentielle - REAL local_q(klon, klev) - REAL psref(klon) ! pression de reference pour temperature potent. - REAL zx_pkh(klon, klev), zx_pkf(klon, klev) - - ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre - REAL gamq(klon, 2:klev) - ! contre-gradient pour la chaleur sensible: Kelvin / metre - REAL gamt(klon, 2:klev) - REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev) - REAL zdelz - - real temp_air(klon), spechum(klon) - real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon) - real petBcoef(klon), peqBcoef(klon) - real p1lay(klon) - + REAL, dimension(size(knindex), klev):: cq, dq, ch, dh ! (knon, klev) + REAL h(size(knindex), klev) ! (knon, klev) enthalpie potentielle + REAL local_q(size(knindex), klev) ! (knon, klev) + REAL pkf(size(knindex), klev) ! (knon, klev) real tsurf_new(size(knindex)) ! (knon) - real zzpk !---------------------------------------------------------------- - knon = size(knindex) - - if (iflag_pbl == 1) then - do k = 3, klev - do i = 1, knon - gamq(i, k)= 0.0 - gamt(i, k)= - 1.0e-03 - enddo - enddo - do i = 1, knon - gamq(i, 2) = 0.0 - gamt(i, 2) = - 2.5e-03 - enddo - else - do k = 2, klev - do i = 1, knon - gamq(i, k) = 0.0 - gamt(i, k) = 0.0 - enddo - enddo - endif - - DO i = 1, knon - psref(i) = paprs(i, 1) !pression de reference est celle au sol - ENDDO - DO k = 1, klev - DO i = 1, knon - zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA - zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA - local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k) - local_q(i, k) = q(i, k) - ENDDO - ENDDO - - ! Convertir les coefficients en variables convenables au calcul: - - DO k = 2, klev - DO i = 1, knon - zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) & - * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2 - zx_coef(i, k) = zx_coef(i, k) * dtime * RG - ENDDO - ENDDO - - ! Preparer les flux lies aux contre-gardients - - DO k = 2, klev - DO i = 1, knon - zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) & - * (pplay(i, k - 1) - pplay(i, k)) - z_gamaq(i, k) = gamq(i, k) * zdelz - z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k) - ENDDO - ENDDO - DO i = 1, knon - zx_buf1(i) = zx_coef(i, klev) + delp(i, klev) - zx_cq(i, klev) = (local_q(i, klev) * delp(i, klev) & - - zx_coef(i, klev) * z_gamaq(i, klev)) / zx_buf1(i) - zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i) - - zzpk=(pplay(i, klev) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev) - zx_ch(i, klev) = (local_h(i, klev) * zzpk * delp(i, klev) & - - zx_coef(i, klev) * z_gamah(i, klev)) / zx_buf2(i) - zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i) - ENDDO - DO k = klev - 1, 2, - 1 - DO i = 1, knon - zx_buf1(i) = delp(i, k) + zx_coef(i, k) & - + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1)) - zx_cq(i, k) = (local_q(i, k) * delp(i, k) & - + zx_coef(i, k + 1) * zx_cq(i, k + 1) & - + zx_coef(i, k + 1) * z_gamaq(i, k + 1) & - - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i) - zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i) - - zzpk=(pplay(i, k) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) & - + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1)) - zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) & - + zx_coef(i, k + 1) * zx_ch(i, k + 1) & - + zx_coef(i, k + 1) * z_gamah(i, k + 1) & - - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i) - zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i) - ENDDO - ENDDO - - DO i = 1, knon - zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2)) - zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) & - + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i) - zx_dq(i, 1) = - 1. * RG / zx_buf1(i) - - zzpk=(pplay(i, 1) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2)) - zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) & - + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i) - zx_dh(i, 1) = - 1. * RG / zx_buf2(i) - ENDDO - - ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface - ! avec la surface - - ! Initialisation - petAcoef =0. - peqAcoef = 0. - petBcoef =0. - peqBcoef = 0. - p1lay =0. - - petAcoef(1:knon) = zx_ch(1:knon, 1) - peqAcoef(1:knon) = zx_cq(1:knon, 1) - petBcoef(1:knon) = zx_dh(1:knon, 1) - peqBcoef(1:knon) = zx_dq(1:knon, 1) - tq_cdrag(1:knon) =coef(:knon, 1) - temp_air(1:knon) =t(1:knon, 1) - spechum(1:knon)=q(1:knon, 1) - p1lay(1:knon) = pplay(1:knon, 1) - - CALL interfsurf_hq(dtime, jour, rmu0, nisurf, knon, knindex, debut, & - tsoil, qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag, petAcoef, & - peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, fder, rugos, & - rugoro, snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, & - fluxlat, dflux_l, dflux_s, tsurf_new, albedo, z0_new, & - pctsrf_new_sic, agesno, fqcalving, ffonte, run_off_lic_0) + call climb_hq_down(pkf, cq, dq, ch, dh, paprs, pplay, t, coef, dtime, & + delp, q) + CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, & + qsol, u1lay, v1lay, t(:, 1), q(:, 1), tq_cdrag, ch(:, 1), cq(:, 1), & + dh(:, 1), dq(:, 1), precip_rain, precip_snow, rugos, rugoro, snow, & + qsurf, ts, pplay(:, 1), paprs(:, 1), radsol, evap, flux_t, fluxlat, & + dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, & + fqcalving, ffonte, run_off_lic_0) flux_q = - evap d_ts = tsurf_new - ts - ! Une fois qu'on a zx_h_ts, on peut faire l'it\'eration - DO i = 1, knon - local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime - local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime - ENDDO + h(:, 1) = ch(:, 1) + dh(:, 1) * flux_t * dtime + local_q(:, 1) = cq(:, 1) + dq(:, 1) * flux_q * dtime + DO k = 2, klev - DO i = 1, knon - local_q(i, k) = zx_cq(i, k) + zx_dq(i, k) * local_q(i, k - 1) - local_h(i, k) = zx_ch(i, k) + zx_dh(i, k) * local_h(i, k - 1) - ENDDO + h(:, k) = ch(:, k) + dh(:, k) * h(:, k - 1) + local_q(:, k) = cq(:, k) + dq(:, k) * local_q(:, k - 1) ENDDO - ! Calcul des tendances - DO k = 1, klev - DO i = 1, knon - d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k) - d_q(i, k) = local_q(i, k) - q(i, k) - ENDDO - ENDDO + d_t = h / pkf / RCPD - t + d_q = local_q - q END SUBROUTINE clqh