--- trunk/phylmd/clqh.f 2018/02/05 10:39:38 254 +++ trunk/phylmd/clqh.f 2018/07/20 16:46:48 282 @@ -11,7 +11,7 @@ dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0) ! Author: Z. X. Li (LMD/CNRS) - ! Date: 1993/08/18 + ! Date: 1993 Aug. 18th ! Objet : diffusion verticale de "q" et de "h" USE conf_phys_m, ONLY: iflag_pbl @@ -30,8 +30,8 @@ ! column-density of water in soil, in kg m-2 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - real rugos(klon) ! rugosite - REAL rugoro(klon) + real, intent(in):: rugos(:) ! (knon) rugosite + REAL, intent(in):: rugoro(:) ! (knon) REAL, intent(in):: u1lay(:), v1lay(:) ! (knon) ! vitesse de la 1ere couche (m / s) @@ -42,14 +42,19 @@ REAL, intent(in):: tq_cdrag(:) ! (knon) sans unite - REAL t(klon, klev) ! temperature (K) - REAL q(klon, klev) ! humidite specifique (kg / kg) + REAL, intent(in):: t(:, :) ! (knon, klev) temperature (K) + REAL, intent(in):: q(:, :) ! (knon, klev) humidite specifique (kg / kg) REAL, intent(in):: ts(:) ! (knon) temperature du sol (K) - REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa) - REAL pplay(klon, klev) ! pression au milieu de couche (Pa) + + REAL, intent(in):: paprs(:, :) ! (knon, klev + 1) + ! pression a inter-couche (Pa) + + REAL, intent(in):: pplay(:, :) ! (knon, klev) + ! pression au milieu de couche (Pa) + REAL delp(klon, klev) ! epaisseur de couche en pression (Pa) - REAL, intent(inout):: radsol(:) ! (knon) + REAL, intent(in):: radsol(:) ! (knon) ! rayonnement net au sol (Solaire + IR) W / m2 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface @@ -65,10 +70,10 @@ real, intent(out):: fluxlat(:) ! (knon) real, intent(in):: pctsrf_new_sic(:) ! (klon) REAL, intent(inout):: agesno(:) ! (knon) - REAL d_t(klon, klev) ! incrementation de "t" - REAL d_q(klon, klev) ! incrementation de "q" + REAL, intent(out):: d_t(:, :) ! (knon, klev) incrementation de "t" + REAL, intent(out):: d_q(:, :) ! (knon, klev) incrementation de "q" REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature - real z0_new(klon) + real, intent(out):: z0_new(:) ! (knon) REAL, intent(out):: flux_t(:) ! (knon) ! (diagnostic) flux de chaleur sensible (Cp T) à la surface, @@ -80,45 +85,34 @@ REAL dflux_s(:) ! (knon) derivee du flux sensible dF / dTs REAL dflux_l(:) ! (knon) derivee du flux latent dF / dTs + REAL, intent(out):: fqcalving(:) ! (knon) ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la ! hauteur de neige, en kg / m2 / s - REAL fqcalving(klon) - ! Flux thermique utiliser pour fondre la neige REAL ffonte(klon) + ! Flux thermique utiliser pour fondre la neige REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent ! Local: - INTEGER knon REAL evap(size(knindex)) ! (knon) evaporation au sol - INTEGER i, k - REAL zx_cq(klon, klev) - REAL zx_dq(klon, klev) - REAL zx_ch(klon, klev) - REAL zx_dh(klon, klev) - REAL zx_buf1(klon) - REAL zx_buf2(klon) - REAL zx_coef(klon, klev) - REAL local_h(klon, klev) ! enthalpie potentielle - REAL local_q(klon, klev) - REAL psref(klon) ! pression de reference pour temperature potent. - REAL zx_pkh(klon, klev), zx_pkf(klon, klev) - - ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre - REAL gamq(klon, 2:klev) - ! contre-gradient pour la chaleur sensible: Kelvin / metre - REAL gamt(klon, 2:klev) - REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev) - REAL zdelz - - real temp_air(klon), spechum(klon) - real petAcoef(klon), peqAcoef(klon) - real petBcoef(klon), peqBcoef(klon) - real p1lay(klon) + REAL, dimension(size(knindex), klev):: cq, dq, ch, dh ! (knon, klev) + REAL buf1(klon), buf2(klon) + REAL zx_coef(size(knindex), 2:klev) ! (knon, 2:klev) + REAL h(size(knindex), klev) ! (knon, klev) enthalpie potentielle + REAL local_q(size(knindex), klev) ! (knon, klev) + + REAL psref(size(knindex)) ! (knon) + ! pression de reference pour temperature potentielle + + REAL pkf(size(knindex), klev) ! (knon, klev) + REAL gamt(size(knindex), 2:klev) ! (knon, 2:klev) + ! contre-gradient pour la chaleur sensible, en K m-1 + + REAL gamah(size(knindex), 2:klev) ! (knon, 2:klev) real tsurf_new(size(knindex)) ! (knon) real zzpk @@ -127,149 +121,90 @@ knon = size(knindex) if (iflag_pbl == 1) then - do k = 3, klev - do i = 1, knon - gamq(i, k)= 0.0 - gamt(i, k)= - 1.0e-03 - enddo - enddo - do i = 1, knon - gamq(i, 2) = 0.0 - gamt(i, 2) = - 2.5e-03 - enddo + gamt(:, 2) = - 2.5e-3 + gamt(:, 3:)= - 1e-3 else - do k = 2, klev - do i = 1, knon - gamq(i, k) = 0.0 - gamt(i, k) = 0.0 - enddo - enddo + gamt = 0. endif - DO i = 1, knon - psref(i) = paprs(i, 1) !pression de reference est celle au sol - ENDDO - DO k = 1, klev - DO i = 1, knon - zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA - zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA - local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k) - local_q(i, k) = q(i, k) - ENDDO - ENDDO + psref = paprs(:, 1) ! pression de reference est celle au sol + forall (k = 1:klev) pkf(:, k) = (psref / pplay(:, k))**RKAPPA + h = RCPD * t * pkf ! Convertir les coefficients en variables convenables au calcul: - - DO k = 2, klev - DO i = 1, knon - zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) & - * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2 - zx_coef(i, k) = zx_coef(i, k) * dtime * RG - ENDDO - ENDDO + forall (k = 2:klev) zx_coef(:, k) = coef(:, k) * RG & + / (pplay(:, k - 1) - pplay(:, k)) & + * (paprs(:, k) * 2 / (t(:, k) + t(:, k - 1)) / RD)**2 * dtime * RG ! Preparer les flux lies aux contre-gardients + forall (k = 2:klev) gamah(:, k) = gamt(:, k) * (RD * (t(:, k - 1) & + + t(:, k)) / 2. / RG / paprs(:, k) * (pplay(:, k - 1) - pplay(:, k))) & + * RCPD * (psref(:) / paprs(:, k))**RKAPPA - DO k = 2, klev - DO i = 1, knon - zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) & - * (pplay(i, k - 1) - pplay(i, k)) - z_gamaq(i, k) = gamq(i, k) * zdelz - z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k) - ENDDO - ENDDO DO i = 1, knon - zx_buf1(i) = zx_coef(i, klev) + delp(i, klev) - zx_cq(i, klev) = (local_q(i, klev) * delp(i, klev) & - - zx_coef(i, klev) * z_gamaq(i, klev)) / zx_buf1(i) - zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i) + buf1(i) = zx_coef(i, klev) + delp(i, klev) + cq(i, klev) = q(i, klev) * delp(i, klev) / buf1(i) + dq(i, klev) = zx_coef(i, klev) / buf1(i) zzpk=(pplay(i, klev) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev) - zx_ch(i, klev) = (local_h(i, klev) * zzpk * delp(i, klev) & - - zx_coef(i, klev) * z_gamah(i, klev)) / zx_buf2(i) - zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i) + buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev) + ch(i, klev) = (h(i, klev) * zzpk * delp(i, klev) & + - zx_coef(i, klev) * gamah(i, klev)) / buf2(i) + dh(i, klev) = zx_coef(i, klev) / buf2(i) ENDDO + DO k = klev - 1, 2, - 1 DO i = 1, knon - zx_buf1(i) = delp(i, k) + zx_coef(i, k) & - + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1)) - zx_cq(i, k) = (local_q(i, k) * delp(i, k) & - + zx_coef(i, k + 1) * zx_cq(i, k + 1) & - + zx_coef(i, k + 1) * z_gamaq(i, k + 1) & - - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i) - zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i) + buf1(i) = delp(i, k) + zx_coef(i, k) & + + zx_coef(i, k + 1) * (1. - dq(i, k + 1)) + cq(i, k) = (q(i, k) * delp(i, k) & + + zx_coef(i, k + 1) * cq(i, k + 1)) / buf1(i) + dq(i, k) = zx_coef(i, k) / buf1(i) zzpk=(pplay(i, k) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) & - + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1)) - zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) & - + zx_coef(i, k + 1) * zx_ch(i, k + 1) & - + zx_coef(i, k + 1) * z_gamah(i, k + 1) & - - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i) - zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i) + buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) & + + zx_coef(i, k + 1) * (1. - dh(i, k + 1)) + ch(i, k) = (h(i, k) * zzpk * delp(i, k) & + + zx_coef(i, k + 1) * ch(i, k + 1) & + + zx_coef(i, k + 1) * gamah(i, k + 1) & + - zx_coef(i, k) * gamah(i, k)) / buf2(i) + dh(i, k) = zx_coef(i, k) / buf2(i) ENDDO ENDDO DO i = 1, knon - zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2)) - zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) & - + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i) - zx_dq(i, 1) = - 1. * RG / zx_buf1(i) + buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - dq(i, 2)) + cq(i, 1) = (q(i, 1) * delp(i, 1) & + + zx_coef(i, 2) * cq(i, 2)) / buf1(i) + dq(i, 1) = - 1. * RG / buf1(i) zzpk=(pplay(i, 1) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2)) - zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) & - + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i) - zx_dh(i, 1) = - 1. * RG / zx_buf2(i) + buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - dh(i, 2)) + ch(i, 1) = (h(i, 1) * zzpk * delp(i, 1) & + + zx_coef(i, 2) * (gamah(i, 2) + ch(i, 2))) / buf2(i) + dh(i, 1) = - 1. * RG / buf2(i) ENDDO - ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface - ! avec la surface - - ! Initialisation - petAcoef =0. - peqAcoef = 0. - petBcoef =0. - peqBcoef = 0. - p1lay =0. - - petAcoef(1:knon) = zx_ch(1:knon, 1) - peqAcoef(1:knon) = zx_cq(1:knon, 1) - petBcoef(1:knon) = zx_dh(1:knon, 1) - peqBcoef(1:knon) = zx_dq(1:knon, 1) - temp_air(1:knon) =t(1:knon, 1) - spechum(1:knon)=q(1:knon, 1) - p1lay(1:knon) = pplay(1:knon, 1) - CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, & - qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag(:knon), petAcoef, peqAcoef, & - petBcoef, peqBcoef, precip_rain, precip_snow, rugos, rugoro, snow, & - qsurf, ts, p1lay, psref, radsol, evap, flux_t, fluxlat, dflux_l, & - dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, & - fqcalving, ffonte, run_off_lic_0) + qsol, u1lay, v1lay, t(:, 1), q(:, 1), tq_cdrag(:knon), ch(:, 1), & + cq(:, 1), dh(:, 1), dq(:, 1), precip_rain, precip_snow, rugos, & + rugoro, snow, qsurf, ts, pplay(:, 1), psref, radsol, evap, flux_t, & + fluxlat, dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, & + agesno, fqcalving, ffonte, run_off_lic_0) flux_q = - evap d_ts = tsurf_new - ts - DO i = 1, knon - local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime - local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime - ENDDO + h(:, 1) = ch(:, 1) + dh(:, 1) * flux_t * dtime + local_q(:, 1) = cq(:, 1) + dq(:, 1) * flux_q * dtime + DO k = 2, klev - DO i = 1, knon - local_q(i, k) = zx_cq(i, k) + zx_dq(i, k) * local_q(i, k - 1) - local_h(i, k) = zx_ch(i, k) + zx_dh(i, k) * local_h(i, k - 1) - ENDDO + h(:, k) = ch(:, k) + dh(:, k) * h(:, k - 1) + local_q(:, k) = cq(:, k) + dq(:, k) * local_q(:, k - 1) ENDDO - ! Calcul des tendances - DO k = 1, klev - DO i = 1, knon - d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k) - d_q(i, k) = local_q(i, k) - q(i, k) - ENDDO - ENDDO + d_t = h / pkf / RCPD - t + d_q = local_q - q END SUBROUTINE clqh