--- trunk/phylmd/clqh.f 2018/07/20 15:47:57 280 +++ trunk/phylmd/Interface_surf/clqh.f 2018/07/24 15:22:48 286 @@ -30,8 +30,8 @@ ! column-density of water in soil, in kg m-2 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - real rugos(klon) ! rugosite - REAL rugoro(klon) + real, intent(in):: rugos(:) ! (knon) rugosite + REAL, intent(in):: rugoro(:) ! (knon) REAL, intent(in):: u1lay(:), v1lay(:) ! (knon) ! vitesse de la 1ere couche (m / s) @@ -52,14 +52,17 @@ REAL, intent(in):: pplay(:, :) ! (knon, klev) ! pression au milieu de couche (Pa) - REAL delp(klon, klev) ! epaisseur de couche en pression (Pa) + REAL, intent(in):: delp(:, :) ! (knon, klev) + ! epaisseur de couche en pression (Pa) REAL, intent(in):: radsol(:) ! (knon) ! rayonnement net au sol (Solaire + IR) W / m2 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige - REAL qsurf(klon) ! humidite de l'air au dessus de la surface + + REAL, intent(out):: qsurf(:) ! (knon) + ! humidite de l'air au dessus de la surface real, intent(in):: precip_rain(klon) ! liquid water mass flux (kg / m2 / s), positive down @@ -70,10 +73,10 @@ real, intent(out):: fluxlat(:) ! (knon) real, intent(in):: pctsrf_new_sic(:) ! (klon) REAL, intent(inout):: agesno(:) ! (knon) - REAL d_t(klon, klev) ! incrementation de "t" - REAL d_q(klon, klev) ! incrementation de "q" + REAL, intent(out):: d_t(:, :) ! (knon, klev) incrementation de "t" + REAL, intent(out):: d_q(:, :) ! (knon, klev) incrementation de "q" REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature - real z0_new(klon) + real, intent(out):: z0_new(:) ! (knon) REAL, intent(out):: flux_t(:) ! (knon) ! (diagnostic) flux de chaleur sensible (Cp T) à la surface, @@ -82,8 +85,8 @@ REAL, intent(out):: flux_q(:) ! (knon) ! flux de la vapeur d'eau à la surface, en kg / (m**2 s) - REAL dflux_s(:) ! (knon) derivee du flux sensible dF / dTs - REAL dflux_l(:) ! (knon) derivee du flux latent dF / dTs + REAL, intent(out):: dflux_s(:) ! (knon) derivee du flux sensible dF / dTs + REAL, intent(out):: dflux_l(:) ! (knon) derivee du flux latent dF / dTs REAL, intent(out):: fqcalving(:) ! (knon) ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la @@ -96,12 +99,10 @@ ! Local: - INTEGER knon + INTEGER knon, k REAL evap(size(knindex)) ! (knon) evaporation au sol - - INTEGER i, k - REAL cq(klon, klev), dq(klon, klev), zx_ch(klon, klev), zx_dh(klon, klev) - REAL buf1(klon), buf2(klon) + REAL, dimension(size(knindex), klev):: cq, dq, ch, dh ! (knon, klev) + REAL buf1(size(knindex)), buf2(size(knindex)) REAL zx_coef(size(knindex), 2:klev) ! (knon, 2:klev) REAL h(size(knindex), klev) ! (knon, klev) enthalpie potentielle REAL local_q(size(knindex), klev) ! (knon, klev) @@ -115,12 +116,7 @@ ! contre-gradient pour la chaleur sensible, en K m-1 REAL gamah(size(knindex), 2:klev) ! (knon, 2:klev) - real temp_air(klon), spechum(klon) - real petAcoef(klon), peqAcoef(klon) - real petBcoef(klon), peqBcoef(klon) - real p1lay(klon) real tsurf_new(size(knindex)) ! (knon) - real zzpk !---------------------------------------------------------------- @@ -143,98 +139,64 @@ * (paprs(:, k) * 2 / (t(:, k) + t(:, k - 1)) / RD)**2 * dtime * RG ! Preparer les flux lies aux contre-gardients - forall (k = 2:klev) gamah(:, k) = gamt(:, k) * (RD * (t(:, k - 1) & + t(:, k)) / 2. / RG / paprs(:, k) * (pplay(:, k - 1) - pplay(:, k))) & - * RCPD * (psref(:) / paprs(:, k))**RKAPPA + * RCPD * (psref / paprs(:, k))**RKAPPA - DO i = 1, knon - buf1(i) = zx_coef(i, klev) + delp(i, klev) - cq(i, klev) = q(i, klev) * delp(i, klev) / buf1(i) - dq(i, klev) = zx_coef(i, klev) / buf1(i) - - zzpk=(pplay(i, klev) / psref(i))**RKAPPA - buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev) - zx_ch(i, klev) = (h(i, klev) * zzpk * delp(i, klev) & - - zx_coef(i, klev) * gamah(i, klev)) / buf2(i) - zx_dh(i, klev) = zx_coef(i, klev) / buf2(i) - ENDDO + buf1 = zx_coef(:, klev) + delp(:, klev) + cq(:, klev) = q(:, klev) * delp(:, klev) / buf1 + dq(:, klev) = zx_coef(:, klev) / buf1 + + buf2 = delp(:, klev) / pkf(:, klev) + zx_coef(:, klev) + ch(:, klev) = (h(:, klev) / pkf(:, klev) * delp(:, klev) & + - zx_coef(:, klev) * gamah(:, klev)) / buf2 + dh(:, klev) = zx_coef(:, klev) / buf2 DO k = klev - 1, 2, - 1 - DO i = 1, knon - buf1(i) = delp(i, k) + zx_coef(i, k) & - + zx_coef(i, k + 1) * (1. - dq(i, k + 1)) - cq(i, k) = (q(i, k) * delp(i, k) & - + zx_coef(i, k + 1) * cq(i, k + 1)) / buf1(i) - dq(i, k) = zx_coef(i, k) / buf1(i) - - zzpk=(pplay(i, k) / psref(i))**RKAPPA - buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) & - + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1)) - zx_ch(i, k) = (h(i, k) * zzpk * delp(i, k) & - + zx_coef(i, k + 1) * zx_ch(i, k + 1) & - + zx_coef(i, k + 1) * gamah(i, k + 1) & - - zx_coef(i, k) * gamah(i, k)) / buf2(i) - zx_dh(i, k) = zx_coef(i, k) / buf2(i) - ENDDO - ENDDO - - DO i = 1, knon - buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - dq(i, 2)) - cq(i, 1) = (q(i, 1) * delp(i, 1) & - + zx_coef(i, 2) * cq(i, 2)) / buf1(i) - dq(i, 1) = - 1. * RG / buf1(i) - - zzpk=(pplay(i, 1) / psref(i))**RKAPPA - buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2)) - zx_ch(i, 1) = (h(i, 1) * zzpk * delp(i, 1) & - + zx_coef(i, 2) * (gamah(i, 2) + zx_ch(i, 2))) / buf2(i) - zx_dh(i, 1) = - 1. * RG / buf2(i) - ENDDO - - ! Initialisation - petAcoef =0. - peqAcoef = 0. - petBcoef =0. - peqBcoef = 0. - p1lay =0. - - petAcoef(1:knon) = zx_ch(1:knon, 1) - peqAcoef(1:knon) = cq(1:knon, 1) - petBcoef(1:knon) = zx_dh(1:knon, 1) - peqBcoef(1:knon) = dq(1:knon, 1) - temp_air(1:knon) = t(:, 1) - spechum(1:knon) = q(:, 1) - p1lay(1:knon) = pplay(:, 1) + buf1 = delp(:, k) + zx_coef(:, k) & + + zx_coef(:, k + 1) * (1. - dq(:, k + 1)) + cq(:, k) = (q(:, k) * delp(:, k) & + + zx_coef(:, k + 1) * cq(:, k + 1)) / buf1 + dq(:, k) = zx_coef(:, k) / buf1 + + buf2 = delp(:, k) / pkf(:, k) + zx_coef(:, k) & + + zx_coef(:, k + 1) * (1. - dh(:, k + 1)) + ch(:, k) = (h(:, k) / pkf(:, k) * delp(:, k) & + + zx_coef(:, k + 1) * ch(:, k + 1) & + + zx_coef(:, k + 1) * gamah(:, k + 1) & + - zx_coef(:, k) * gamah(:, k)) / buf2 + dh(:, k) = zx_coef(:, k) / buf2 + ENDDO + + buf1 = delp(:, 1) + zx_coef(:, 2) * (1. - dq(:, 2)) + cq(:, 1) = (q(:, 1) * delp(:, 1) + zx_coef(:, 2) * cq(:, 2)) / buf1 + dq(:, 1) = - 1. * RG / buf1 + + buf2 = delp(:, 1) / pkf(:, 1) + zx_coef(:, 2) * (1. - dh(:, 2)) + ch(:, 1) = (h(:, 1) / pkf(:, 1) * delp(:, 1) & + + zx_coef(:, 2) * (gamah(:, 2) + ch(:, 2))) / buf2 + dh(:, 1) = - 1. * RG / buf2 CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, & - qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag(:knon), petAcoef, & - peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, rugos, & - rugoro, snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, fluxlat, & - dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, & - fqcalving, ffonte, run_off_lic_0) + qsol, u1lay, v1lay, t(:, 1), q(:, 1), tq_cdrag(:knon), ch(:, 1), & + cq(:, 1), dh(:, 1), dq(:, 1), precip_rain, precip_snow, rugos, & + rugoro, snow, qsurf, ts, pplay(:, 1), psref, radsol, evap, flux_t, & + fluxlat, dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, & + agesno, fqcalving, ffonte, run_off_lic_0) flux_q = - evap d_ts = tsurf_new - ts - DO i = 1, knon - h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime - local_q(i, 1) = cq(i, 1) + dq(i, 1) * flux_q(i) * dtime - ENDDO + h(:, 1) = ch(:, 1) + dh(:, 1) * flux_t * dtime + local_q(:, 1) = cq(:, 1) + dq(:, 1) * flux_q * dtime + DO k = 2, klev - DO i = 1, knon - local_q(i, k) = cq(i, k) + dq(i, k) * local_q(i, k - 1) - h(i, k) = zx_ch(i, k) + zx_dh(i, k) * h(i, k - 1) - ENDDO + h(:, k) = ch(:, k) + dh(:, k) * h(:, k - 1) + local_q(:, k) = cq(:, k) + dq(:, k) * local_q(:, k - 1) ENDDO - ! Calcul des tendances - DO k = 1, klev - DO i = 1, knon - d_t(i, k) = h(i, k) / pkf(i, k) / RCPD - t(i, k) - d_q(i, k) = local_q(i, k) - q(i, k) - ENDDO - ENDDO + d_t = h / pkf / RCPD - t + d_q = local_q - q END SUBROUTINE clqh