/[lmdze]/trunk/phylmd/Interface_surf/clqh.f
ViewVC logotype

Contents of /trunk/phylmd/Interface_surf/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 280 - (show annotations)
Fri Jul 20 15:47:57 2018 UTC (5 years, 10 months ago) by guez
Original Path: trunk/phylmd/clqh.f
File size: 8371 byte(s)
Remove gamq (counter-gradient for water vapor) in procedure clqh, was
always 0 (does not appear either any longer in LMDZ).

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, &
8 rugos, rugoro, u1lay, v1lay, coef, tq_cdrag, t, q, ts, paprs, pplay, &
9 delp, radsol, albedo, snow, qsurf, precip_rain, precip_snow, fluxlat, &
10 pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, &
11 dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0)
12
13 ! Author: Z. X. Li (LMD/CNRS)
14 ! Date: 1993 Aug. 18th
15 ! Objet : diffusion verticale de "q" et de "h"
16
17 USE conf_phys_m, ONLY: iflag_pbl
18 USE dimphy, ONLY: klev, klon
19 USE interfsurf_hq_m, ONLY: interfsurf_hq
20 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
21
22 REAL, intent(in):: dtime ! intervalle du temps (s)
23 integer, intent(in):: julien ! jour de l'annee en cours
24 logical, intent(in):: debut
25 integer, intent(in):: nisurf
26 integer, intent(in):: knindex(:) ! (knon)
27 REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx)
28
29 REAL, intent(inout):: qsol(:) ! (knon)
30 ! column-density of water in soil, in kg m-2
31
32 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
33 real rugos(klon) ! rugosite
34 REAL rugoro(klon)
35
36 REAL, intent(in):: u1lay(:), v1lay(:) ! (knon)
37 ! vitesse de la 1ere couche (m / s)
38
39 REAL, intent(in):: coef(:, 2:) ! (knon, 2:klev)
40 ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement
41 ! du vent (dV / dz)
42
43 REAL, intent(in):: tq_cdrag(:) ! (knon) sans unite
44
45 REAL, intent(in):: t(:, :) ! (knon, klev) temperature (K)
46 REAL, intent(in):: q(:, :) ! (knon, klev) humidite specifique (kg / kg)
47 REAL, intent(in):: ts(:) ! (knon) temperature du sol (K)
48
49 REAL, intent(in):: paprs(:, :) ! (knon, klev + 1)
50 ! pression a inter-couche (Pa)
51
52 REAL, intent(in):: pplay(:, :) ! (knon, klev)
53 ! pression au milieu de couche (Pa)
54
55 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
56
57 REAL, intent(in):: radsol(:) ! (knon)
58 ! rayonnement net au sol (Solaire + IR) W / m2
59
60 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface
61 REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige
62 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
63
64 real, intent(in):: precip_rain(klon)
65 ! liquid water mass flux (kg / m2 / s), positive down
66
67 real, intent(in):: precip_snow(klon)
68 ! solid water mass flux (kg / m2 / s), positive down
69
70 real, intent(out):: fluxlat(:) ! (knon)
71 real, intent(in):: pctsrf_new_sic(:) ! (klon)
72 REAL, intent(inout):: agesno(:) ! (knon)
73 REAL d_t(klon, klev) ! incrementation de "t"
74 REAL d_q(klon, klev) ! incrementation de "q"
75 REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature
76 real z0_new(klon)
77
78 REAL, intent(out):: flux_t(:) ! (knon)
79 ! (diagnostic) flux de chaleur sensible (Cp T) à la surface,
80 ! positif vers le bas, W / m2
81
82 REAL, intent(out):: flux_q(:) ! (knon)
83 ! flux de la vapeur d'eau à la surface, en kg / (m**2 s)
84
85 REAL dflux_s(:) ! (knon) derivee du flux sensible dF / dTs
86 REAL dflux_l(:) ! (knon) derivee du flux latent dF / dTs
87
88 REAL, intent(out):: fqcalving(:) ! (knon)
89 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
90 ! hauteur de neige, en kg / m2 / s
91
92 REAL ffonte(klon)
93 ! Flux thermique utiliser pour fondre la neige
94
95 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
96
97 ! Local:
98
99 INTEGER knon
100 REAL evap(size(knindex)) ! (knon) evaporation au sol
101
102 INTEGER i, k
103 REAL cq(klon, klev), dq(klon, klev), zx_ch(klon, klev), zx_dh(klon, klev)
104 REAL buf1(klon), buf2(klon)
105 REAL zx_coef(size(knindex), 2:klev) ! (knon, 2:klev)
106 REAL h(size(knindex), klev) ! (knon, klev) enthalpie potentielle
107 REAL local_q(size(knindex), klev) ! (knon, klev)
108
109 REAL psref(size(knindex)) ! (knon)
110 ! pression de reference pour temperature potentielle
111
112 REAL pkf(size(knindex), klev) ! (knon, klev)
113
114 REAL gamt(size(knindex), 2:klev) ! (knon, 2:klev)
115 ! contre-gradient pour la chaleur sensible, en K m-1
116
117 REAL gamah(size(knindex), 2:klev) ! (knon, 2:klev)
118 real temp_air(klon), spechum(klon)
119 real petAcoef(klon), peqAcoef(klon)
120 real petBcoef(klon), peqBcoef(klon)
121 real p1lay(klon)
122 real tsurf_new(size(knindex)) ! (knon)
123 real zzpk
124
125 !----------------------------------------------------------------
126
127 knon = size(knindex)
128
129 if (iflag_pbl == 1) then
130 gamt(:, 2) = - 2.5e-3
131 gamt(:, 3:)= - 1e-3
132 else
133 gamt = 0.
134 endif
135
136 psref = paprs(:, 1) ! pression de reference est celle au sol
137 forall (k = 1:klev) pkf(:, k) = (psref / pplay(:, k))**RKAPPA
138 h = RCPD * t * pkf
139
140 ! Convertir les coefficients en variables convenables au calcul:
141 forall (k = 2:klev) zx_coef(:, k) = coef(:, k) * RG &
142 / (pplay(:, k - 1) - pplay(:, k)) &
143 * (paprs(:, k) * 2 / (t(:, k) + t(:, k - 1)) / RD)**2 * dtime * RG
144
145 ! Preparer les flux lies aux contre-gardients
146
147 forall (k = 2:klev) gamah(:, k) = gamt(:, k) * (RD * (t(:, k - 1) &
148 + t(:, k)) / 2. / RG / paprs(:, k) * (pplay(:, k - 1) - pplay(:, k))) &
149 * RCPD * (psref(:) / paprs(:, k))**RKAPPA
150
151 DO i = 1, knon
152 buf1(i) = zx_coef(i, klev) + delp(i, klev)
153 cq(i, klev) = q(i, klev) * delp(i, klev) / buf1(i)
154 dq(i, klev) = zx_coef(i, klev) / buf1(i)
155
156 zzpk=(pplay(i, klev) / psref(i))**RKAPPA
157 buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev)
158 zx_ch(i, klev) = (h(i, klev) * zzpk * delp(i, klev) &
159 - zx_coef(i, klev) * gamah(i, klev)) / buf2(i)
160 zx_dh(i, klev) = zx_coef(i, klev) / buf2(i)
161 ENDDO
162
163 DO k = klev - 1, 2, - 1
164 DO i = 1, knon
165 buf1(i) = delp(i, k) + zx_coef(i, k) &
166 + zx_coef(i, k + 1) * (1. - dq(i, k + 1))
167 cq(i, k) = (q(i, k) * delp(i, k) &
168 + zx_coef(i, k + 1) * cq(i, k + 1)) / buf1(i)
169 dq(i, k) = zx_coef(i, k) / buf1(i)
170
171 zzpk=(pplay(i, k) / psref(i))**RKAPPA
172 buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) &
173 + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1))
174 zx_ch(i, k) = (h(i, k) * zzpk * delp(i, k) &
175 + zx_coef(i, k + 1) * zx_ch(i, k + 1) &
176 + zx_coef(i, k + 1) * gamah(i, k + 1) &
177 - zx_coef(i, k) * gamah(i, k)) / buf2(i)
178 zx_dh(i, k) = zx_coef(i, k) / buf2(i)
179 ENDDO
180 ENDDO
181
182 DO i = 1, knon
183 buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - dq(i, 2))
184 cq(i, 1) = (q(i, 1) * delp(i, 1) &
185 + zx_coef(i, 2) * cq(i, 2)) / buf1(i)
186 dq(i, 1) = - 1. * RG / buf1(i)
187
188 zzpk=(pplay(i, 1) / psref(i))**RKAPPA
189 buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2))
190 zx_ch(i, 1) = (h(i, 1) * zzpk * delp(i, 1) &
191 + zx_coef(i, 2) * (gamah(i, 2) + zx_ch(i, 2))) / buf2(i)
192 zx_dh(i, 1) = - 1. * RG / buf2(i)
193 ENDDO
194
195 ! Initialisation
196 petAcoef =0.
197 peqAcoef = 0.
198 petBcoef =0.
199 peqBcoef = 0.
200 p1lay =0.
201
202 petAcoef(1:knon) = zx_ch(1:knon, 1)
203 peqAcoef(1:knon) = cq(1:knon, 1)
204 petBcoef(1:knon) = zx_dh(1:knon, 1)
205 peqBcoef(1:knon) = dq(1:knon, 1)
206 temp_air(1:knon) = t(:, 1)
207 spechum(1:knon) = q(:, 1)
208 p1lay(1:knon) = pplay(:, 1)
209
210 CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, &
211 qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag(:knon), petAcoef, &
212 peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, rugos, &
213 rugoro, snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, fluxlat, &
214 dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, &
215 fqcalving, ffonte, run_off_lic_0)
216
217 flux_q = - evap
218 d_ts = tsurf_new - ts
219
220 DO i = 1, knon
221 h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime
222 local_q(i, 1) = cq(i, 1) + dq(i, 1) * flux_q(i) * dtime
223 ENDDO
224 DO k = 2, klev
225 DO i = 1, knon
226 local_q(i, k) = cq(i, k) + dq(i, k) * local_q(i, k - 1)
227 h(i, k) = zx_ch(i, k) + zx_dh(i, k) * h(i, k - 1)
228 ENDDO
229 ENDDO
230
231 ! Calcul des tendances
232 DO k = 1, klev
233 DO i = 1, knon
234 d_t(i, k) = h(i, k) / pkf(i, k) / RCPD - t(i, k)
235 d_q(i, k) = local_q(i, k) - q(i, k)
236 ENDDO
237 ENDDO
238
239 END SUBROUTINE clqh
240
241 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21