--- trunk/phylmd/Interface_surf/fonte_neige.f90 2013/11/15 18:45:49 76 +++ trunk/Sources/phylmd/Interface_surf/fonte_neige.f 2017/03/30 14:25:18 217 @@ -4,220 +4,124 @@ contains - SUBROUTINE fonte_neige( klon, knon, nisurf, dtime, & - tsurf, p1lay, cal, beta, coef1lay, ps, & - precip_rain, precip_snow, snow, qsol, & - radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & - fqcalving, ffonte, run_off_lic_0) + SUBROUTINE fonte_neige(nisurf, dtime, precip_rain, precip_snow, snow, qsol, & + tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) ! Routine de traitement de la fonte de la neige dans le cas du traitement - ! de sol simplifié + ! de sol simplifi\'e - ! LF 03/2001 - ! input: - ! knon nombre de points a traiter - ! nisurf surface a traiter - ! tsurf temperature de surface - ! p1lay pression 1er niveau (milieu de couche) - ! cal capacite calorifique du sol - ! beta evap reelle - ! coef1lay coefficient d'echange - ! ps pression au sol - ! precip_rain precipitations liquides - ! precip_snow precipitations solides - ! snow champs hauteur de neige - ! qsol hauteur d'eau contenu dans le sol - ! runoff runoff en cas de trop plein - ! petAcoef coeff. A de la resolution de la CL pour t - ! peqAcoef coeff. A de la resolution de la CL pour q - ! petBcoef coeff. B de la resolution de la CL pour t - ! peqBcoef coeff. B de la resolution de la CL pour q - ! radsol rayonnement net aus sol (LW + SW) - ! dif_grnd coeff. diffusion vers le sol profond - - ! output: - ! tsurf_new temperature au sol - ! fluxsens flux de chaleur sensible - ! fluxlat flux de chaleur latente - ! dflux_s derivee du flux de chaleur sensible / Ts - ! dflux_l derivee du flux de chaleur latente / Ts - ! in/out: - ! run_off_lic_0 run off glacier du pas de temps précedent - - - use indicesol - use SUPHEC_M - use yoethf_m - use fcttre - use interface_surf - !IM cf JLD - - ! Parametres d'entree - integer, intent(IN) :: knon, nisurf, klon - real , intent(IN) :: dtime - real, dimension(klon), intent(IN) :: petAcoef, peqAcoef - real, dimension(klon), intent(IN) :: petBcoef, peqBcoef - real, dimension(klon), intent(IN) :: ps, q1lay - real, dimension(klon), intent(IN) :: tsurf, p1lay, cal, beta, coef1lay - real, dimension(klon), intent(IN) :: precip_rain, precip_snow - real, dimension(klon), intent(IN) :: radsol, dif_grnd - real, dimension(klon), intent(IN) :: t1lay, u1lay, v1lay - real, dimension(klon), intent(INOUT) :: snow, qsol - - ! Parametres sorties - real, dimension(klon), intent(INOUT):: tsurf_new, evap, fluxsens, fluxlat - real, dimension(klon), intent(INOUT):: dflux_s, dflux_l - ! Flux thermique utiliser pour fondre la neige - real, dimension(klon), intent(INOUT):: ffonte - ! Flux d'eau "perdue" par la surface et necessaire pour que limiter la - ! hauteur de neige, en kg/m2/s - real, dimension(klon), intent(INOUT):: fqcalving - real, dimension(klon), intent(INOUT):: run_off_lic_0 - ! Variables locales - ! Masse maximum de neige (kg/m2). Au dessus de ce seuil, la neige - ! en exces "s'ecoule" (calving) - ! real, parameter :: snow_max=1. - !IM cf JLD/GK - real, parameter :: snow_max=3000. - integer :: i - real, dimension(klon) :: zx_mh, zx_nh, zx_oh - real, dimension(klon) :: zx_mq, zx_nq, zx_oq - real, dimension(klon) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef - real, dimension(klon) :: zx_sl, zx_k1 - real, dimension(klon) :: zx_q_0 , d_ts - real :: zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh - real :: bilan_f, fq_fonte - REAL :: subli, fsno - REAL, DIMENSION(klon) :: bil_eau_s, snow_evap - real, parameter :: t_grnd = 271.35, t_coup = 273.15 - !! PB temporaire en attendant mieux pour le modele de neige - ! REAL, parameter :: chasno = RLMLT/(2.3867E+06*0.15) - REAL, parameter :: chasno = 3.334E+05/(2.3867E+06*0.15) - !IM cf JLD/ GKtest - REAL, parameter :: chaice = 3.334E+05/(2.3867E+06*0.15) - ! fin GKtest - - logical, save :: check = .FALSE. - character (len = 20) :: modname = 'fonte_neige' - logical, save :: neige_fond = .false. - real, save :: max_eau_sol = 150.0 - character (len = 80) :: abort_message - logical, save :: first = .true., second=.false. - real :: coeff_rel - - if (check) write(*, *)'Entree ', modname, ' surface = ', nisurf - - ! Initialisations - coeff_rel = dtime/(tau_calv * rday) - bil_eau_s = 0. - DO i = 1, knon - zx_pkh(i) = (ps(i)/ps(i))**RKAPPA - IF (thermcep) THEN - zdelta=MAX(0., SIGN(1., rtt-tsurf(i))) - zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta - zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q1lay(i)) - zx_qs= r2es * FOEEW(tsurf(i), zdelta)/ps(i) - zx_qs=MIN(0.5, zx_qs) - zcor=1./(1.-retv*zx_qs) - zx_qs=zx_qs*zcor - zx_dq_s_dh = FOEDE(tsurf(i), zdelta, zcvm5, zx_qs, zcor) & - /RLVTT / zx_pkh(i) - ELSE - IF (tsurf(i).LT.t_coup) THEN - zx_qs = qsats(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsats(tsurf(i), zx_qs)/RLVTT & - / zx_pkh(i) - ELSE - zx_qs = qsatl(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsatl(tsurf(i), zx_qs)/RLVTT & - / zx_pkh(i) - ENDIF - ENDIF - zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh - zx_qsat(i) = zx_qs - zx_coef(i) = coef1lay(i) & - * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) & - * p1lay(i)/(RD*t1lay(i)) - ENDDO + ! Laurent Fairhead, March, 2001 - ! === Calcul de la temperature de surface === + USE fcttre, ONLY: foeew, qsatl, qsats + USE indicesol, ONLY: epsfra, is_lic, is_sic, is_ter + USE interface_surf, ONLY: tau_calv + use nr_util, only: assert_eq + USE suphec_m, ONLY: rday, rlmlt, rtt - ! zx_sl = chaleur latente d'evaporation ou de sublimation + integer, intent(IN):: nisurf ! surface \`a traiter + real, intent(IN):: dtime ! pas de temps de la physique (en s) - do i = 1, knon - zx_sl(i) = RLVTT - if (tsurf(i) .LT. RTT) zx_sl(i) = RLSTT - zx_k1(i) = zx_coef(i) - enddo + real, intent(IN):: precip_rain(:) ! (knon) + ! precipitation, liquid water mass flux (kg / m2 / s), positive down - do i = 1, knon - ! Q - zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) - zx_mq(i) = beta(i) * zx_k1(i) * & - (peqAcoef(i) - zx_qsat(i) & - + zx_dq_s_dt(i) * tsurf(i)) & - / zx_oq(i) - zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) & - / zx_oq(i) - - ! H - zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) - zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) - zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) - enddo + real, intent(IN):: precip_snow(:) ! (knon) + ! precipitation, solid water mass flux (kg / m2 / s), positive down + + real, intent(INOUT):: snow(:) ! (knon) + ! column-density of mass of snow, in kg m-2 + + real, intent(INOUT):: qsol(:) ! (knon) + ! column-density of water in soil, in kg m-2 + + real, intent(INOUT):: tsurf_new(:) ! (knon) temp\'erature au sol + real, intent(IN):: evap(:) ! (knon) + + real, intent(OUT):: fqcalving(:) ! (knon) + ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter la + ! hauteur de neige, en kg / m2 / s + + real, intent(OUT):: ffonte(:) ! (knon) + ! flux thermique utilis\'é pour fondre la neige + + real, intent(INOUT):: run_off_lic_0(:) ! (knon) + ! run off glacier du pas de temps pr\'ecedent + + ! Local: - WHERE (precip_snow > 0.) snow = snow + (precip_snow * dtime) - snow_evap = 0. - WHERE (evap > 0. ) - snow_evap = MIN (snow / dtime, evap) + integer knon ! nombre de points \`a traiter + real, parameter:: snow_max=3000. + ! Masse maximum de neige (kg / m2). Au dessus de ce seuil, la neige + ! en exces "s'\'ecoule" (calving). + + integer i + real fq_fonte + REAL bil_eau_s(size(precip_rain)) ! (knon) in kg m-2 + real snow_evap(size(precip_rain)) ! (knon) in kg m-2 s-1 + REAL, parameter:: chasno = 3.334E5 / (2.3867E6 * 0.15) + REAL, parameter:: chaice = 3.334E5 / (2.3867E6 * 0.15) + real, parameter:: max_eau_sol = 150. ! in kg m-2 + real coeff_rel + REAL, ALLOCATABLE, SAVE:: run_off_lic(:) ! ruissellement total + + !-------------------------------------------------------------------- + + knon = assert_eq((/size(precip_rain), size(precip_snow), size(snow), & + size(qsol), size(tsurf_new), size(evap), size(fqcalving), & + size(ffonte), size(run_off_lic_0)/), "fonte_neige knon") + + coeff_rel = dtime / (tau_calv * rday) + WHERE (precip_snow > 0.) snow = snow + precip_snow * dtime + + WHERE (evap > 0.) + snow_evap = MIN(snow / dtime, evap) snow = snow - snow_evap * dtime - snow = MAX(0.0, snow) + snow = MAX(0., snow) + elsewhere + snow_evap = 0. end where - ! bil_eau_s = bil_eau_s + (precip_rain * dtime) - (evap - snow_evap) * dtime - bil_eau_s = (precip_rain * dtime) - (evap - snow_evap) * dtime - + bil_eau_s = (precip_rain - evap + snow_evap) * dtime - ! Y'a-t-il fonte de neige? + ! Y a-t-il fonte de neige ? - ffonte=0. do i = 1, knon - neige_fond = ((snow(i) > epsfra .OR. nisurf == is_sic .OR. nisurf == is_lic) & - .AND. tsurf_new(i) >= RTT) - if (neige_fond) then - fq_fonte = MIN( MAX((tsurf_new(i)-RTT )/chasno, 0.0), snow(i)) - ffonte(i) = fq_fonte * RLMLT/dtime + if ((snow(i) > epsfra .OR. nisurf == is_sic & + .OR. nisurf == is_lic) .AND. tsurf_new(i) >= RTT) then + fq_fonte = MIN(MAX((tsurf_new(i) - RTT) / chasno, 0.), snow(i)) + ffonte(i) = fq_fonte * RLMLT / dtime snow(i) = max(0., snow(i) - fq_fonte) bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = tsurf_new(i) - fq_fonte * chasno - !IM cf JLD OK - !IM cf JLD/ GKtest fonte aussi pour la glace - IF (nisurf == is_sic .OR. nisurf == is_lic ) THEN - fq_fonte = MAX((tsurf_new(i)-RTT )/chaice, 0.0) - ffonte(i) = ffonte(i) + fq_fonte * RLMLT/dtime + + !IM cf. JLD/ GKtest fonte aussi pour la glace + IF (nisurf == is_sic .OR. nisurf == is_lic) THEN + fq_fonte = MAX((tsurf_new(i) - RTT) / chaice, 0.) + ffonte(i) = ffonte(i) + fq_fonte * RLMLT / dtime bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = RTT ENDIF - d_ts(i) = tsurf_new(i) - tsurf(i) + else + ffonte(i) = 0. endif - ! s'il y a une hauteur trop importante de neige, elle s'coule - fqcalving(i) = max(0., snow(i) - snow_max)/dtime - snow(i)=min(snow(i), snow_max) - - IF (nisurf == is_ter) then - qsol(i) = qsol(i) + bil_eau_s(i) - run_off(i) = run_off(i) + MAX(qsol(i) - max_eau_sol, 0.0) - qsol(i) = MIN(qsol(i), max_eau_sol) - else if (nisurf == is_lic) then + ! S'il y a une hauteur trop importante de neige, elle s'\'ecoule + fqcalving(i) = max(0., snow(i) - snow_max) / dtime + snow(i) = min(snow(i), snow_max) + enddo + + IF (nisurf == is_ter) then + qsol = MIN(qsol + bil_eau_s, max_eau_sol) + else if (nisurf == is_lic) then + if (.not. allocated(run_off_lic)) allocate(run_off_lic(knon)) + ! assumes that the fraction of land-ice does not change during the run + + do i = 1, knon run_off_lic(i) = (coeff_rel * fqcalving(i)) + & (1. - coeff_rel) * run_off_lic_0(i) run_off_lic_0(i) = run_off_lic(i) - run_off_lic(i) = run_off_lic(i) + bil_eau_s(i)/dtime - endif - enddo + run_off_lic(i) = run_off_lic(i) + bil_eau_s(i) / dtime + enddo + endif END SUBROUTINE fonte_neige