--- trunk/phylmd/Interface_surf/fonte_neige.f 2014/07/07 17:45:21 101 +++ trunk/Sources/phylmd/Interface_surf/fonte_neige.f 2017/03/30 14:25:18 217 @@ -4,193 +4,124 @@ contains - SUBROUTINE fonte_neige(klon, knon, nisurf, dtime, tsurf, p1lay, beta, & - coef1lay, ps, precip_rain, precip_snow, snow, qsol, t1lay, q1lay, & - u1lay, v1lay, petAcoef, peqAcoef, petBcoef, peqBcoef, tsurf_new, evap, & - fqcalving, ffonte, run_off_lic_0) + SUBROUTINE fonte_neige(nisurf, dtime, precip_rain, precip_snow, snow, qsol, & + tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) ! Routine de traitement de la fonte de la neige dans le cas du traitement - ! de sol simplifié + ! de sol simplifi\'e - ! LF 03/2001 + ! Laurent Fairhead, March, 2001 - USE fcttre, ONLY: dqsatl, dqsats, foede, foeew, qsatl, qsats, thermcep + USE fcttre, ONLY: foeew, qsatl, qsats USE indicesol, ONLY: epsfra, is_lic, is_sic, is_ter - USE interface_surf, ONLY: run_off, run_off_lic, tau_calv - USE suphec_m, ONLY: rcpd, rd, rday, retv, rkappa, rlmlt, rlstt, rlvtt, rtt - USE yoethf_m, ONLY: r2es, r5ies, r5les, rvtmp2 - - integer, intent(IN):: klon - integer, intent(IN):: knon ! nombre de points à traiter - integer, intent(IN):: nisurf ! surface à traiter + USE interface_surf, ONLY: tau_calv + use nr_util, only: assert_eq + USE suphec_m, ONLY: rday, rlmlt, rtt + + integer, intent(IN):: nisurf ! surface \`a traiter real, intent(IN):: dtime ! pas de temps de la physique (en s) - real, dimension(klon), intent(IN):: tsurf, p1lay, beta, coef1lay - ! tsurf temperature de surface - ! p1lay pression 1er niveau (milieu de couche) - ! beta evap reelle - ! coef1lay coefficient d'echange - real, dimension(klon), intent(IN):: ps - ! ps pression au sol real, intent(IN):: precip_rain(:) ! (knon) - ! precipitation, liquid water mass flux (kg/m2/s), positive down + ! precipitation, liquid water mass flux (kg / m2 / s), positive down - real, intent(IN):: precip_snow(klon) - ! precipitation, solid water mass flux (kg/m2/s), positive down + real, intent(IN):: precip_snow(:) ! (knon) + ! precipitation, solid water mass flux (kg / m2 / s), positive down - real, intent(INOUT):: snow(klon) ! column-density of mass of snow, in kg m-2 + real, intent(INOUT):: snow(:) ! (knon) + ! column-density of mass of snow, in kg m-2 real, intent(INOUT):: qsol(:) ! (knon) ! column-density of water in soil, in kg m-2 - real, dimension(klon), intent(IN):: t1lay - real, dimension(klon), intent(IN):: q1lay - real, dimension(klon), intent(IN):: u1lay, v1lay - real, dimension(klon), intent(IN):: petAcoef, peqAcoef - ! petAcoef coeff. A de la resolution de la CL pour t - ! peqAcoef coeff. A de la resolution de la CL pour q - real, dimension(klon), intent(IN):: petBcoef, peqBcoef - ! petBcoef coeff. B de la resolution de la CL pour t - ! peqBcoef coeff. B de la resolution de la CL pour q - - real, intent(INOUT):: tsurf_new(klon), evap(klon) - ! tsurf_new temperature au sol - - ! Flux d'eau "perdue" par la surface et necessaire pour que limiter la - ! hauteur de neige, en kg/m2/s - real, dimension(klon), intent(INOUT):: fqcalving + real, intent(INOUT):: tsurf_new(:) ! (knon) temp\'erature au sol + real, intent(IN):: evap(:) ! (knon) + + real, intent(OUT):: fqcalving(:) ! (knon) + ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter la + ! hauteur de neige, en kg / m2 / s - ! Flux thermique utiliser pour fondre la neige - real, dimension(klon), intent(INOUT):: ffonte + real, intent(OUT):: ffonte(:) ! (knon) + ! flux thermique utilis\'é pour fondre la neige - real, dimension(klon), intent(INOUT):: run_off_lic_0 - ! run_off_lic_0 run off glacier du pas de temps précedent + real, intent(INOUT):: run_off_lic_0(:) ! (knon) + ! run off glacier du pas de temps pr\'ecedent ! Local: + integer knon ! nombre de points \`a traiter real, parameter:: snow_max=3000. - ! Masse maximum de neige (kg/m2). Au dessus de ce seuil, la neige - ! en exces "s'ecoule" (calving) + ! Masse maximum de neige (kg / m2). Au dessus de ce seuil, la neige + ! en exces "s'\'ecoule" (calving). integer i - real, dimension(klon):: zx_mh, zx_nh, zx_oh - real, dimension(klon):: zx_mq, zx_nq, zx_oq - real, dimension(klon):: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef - real, dimension(klon):: zx_sl, zx_k1 - real, dimension(klon):: d_ts - real zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh real fq_fonte - REAL bil_eau_s(knon) ! in kg m-2 - real snow_evap(klon) ! in kg m-2 s-1 - real, parameter:: t_grnd = 271.35, t_coup = 273.15 - REAL, parameter:: chasno = 3.334E5/(2.3867E6*0.15) - REAL, parameter:: chaice = 3.334E5/(2.3867E6*0.15) + REAL bil_eau_s(size(precip_rain)) ! (knon) in kg m-2 + real snow_evap(size(precip_rain)) ! (knon) in kg m-2 s-1 + REAL, parameter:: chasno = 3.334E5 / (2.3867E6 * 0.15) + REAL, parameter:: chaice = 3.334E5 / (2.3867E6 * 0.15) real, parameter:: max_eau_sol = 150. ! in kg m-2 real coeff_rel + REAL, ALLOCATABLE, SAVE:: run_off_lic(:) ! ruissellement total !-------------------------------------------------------------------- - ! Initialisations - coeff_rel = dtime/(tau_calv * rday) - bil_eau_s = 0. - DO i = 1, knon - zx_pkh(i) = (ps(i)/ps(i))**RKAPPA - IF (thermcep) THEN - zdelta=MAX(0., SIGN(1., rtt-tsurf(i))) - zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta - zcvm5 = zcvm5 / RCPD / (1. + RVTMP2*q1lay(i)) - zx_qs= r2es * FOEEW(tsurf(i), zdelta)/ps(i) - zx_qs=MIN(0.5, zx_qs) - zcor=1./(1.-retv*zx_qs) - zx_qs=zx_qs*zcor - zx_dq_s_dh = FOEDE(tsurf(i), zdelta, zcvm5, zx_qs, zcor) /RLVTT & - / zx_pkh(i) - ELSE - IF (tsurf(i) < t_coup) THEN - zx_qs = qsats(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsats(tsurf(i), zx_qs)/RLVTT / zx_pkh(i) - ELSE - zx_qs = qsatl(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsatl(tsurf(i), zx_qs)/RLVTT / zx_pkh(i) - ENDIF - ENDIF - zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh - zx_qsat(i) = zx_qs - zx_coef(i) = coef1lay(i) * (1. + SQRT(u1lay(i)**2 + v1lay(i)**2)) & - * p1lay(i) / (RD * t1lay(i)) - ENDDO - - ! Calcul de la temperature de surface - - ! zx_sl = chaleur latente d'evaporation ou de sublimation - - do i = 1, knon - zx_sl(i) = RLVTT - if (tsurf(i) < RTT) zx_sl(i) = RLSTT - zx_k1(i) = zx_coef(i) - enddo - - do i = 1, knon - ! Q - zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) - zx_mq(i) = beta(i) * zx_k1(i) * (peqAcoef(i) - zx_qsat(i) & - + zx_dq_s_dt(i) * tsurf(i)) / zx_oq(i) - zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) / zx_oq(i) - - ! H - zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) - zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) - zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) - enddo + knon = assert_eq((/size(precip_rain), size(precip_snow), size(snow), & + size(qsol), size(tsurf_new), size(evap), size(fqcalving), & + size(ffonte), size(run_off_lic_0)/), "fonte_neige knon") + coeff_rel = dtime / (tau_calv * rday) WHERE (precip_snow > 0.) snow = snow + precip_snow * dtime WHERE (evap > 0.) - snow_evap = MIN (snow / dtime, evap) + snow_evap = MIN(snow / dtime, evap) snow = snow - snow_evap * dtime snow = MAX(0., snow) elsewhere snow_evap = 0. end where - bil_eau_s = precip_rain * dtime - (evap(:knon) - snow_evap(:knon)) * dtime + bil_eau_s = (precip_rain - evap + snow_evap) * dtime - ! Y'a-t-il fonte de neige? + ! Y a-t-il fonte de neige ? - ffonte=0. do i = 1, knon if ((snow(i) > epsfra .OR. nisurf == is_sic & .OR. nisurf == is_lic) .AND. tsurf_new(i) >= RTT) then - fq_fonte = MIN(MAX((tsurf_new(i)-RTT)/chasno, 0.), snow(i)) - ffonte(i) = fq_fonte * RLMLT/dtime + fq_fonte = MIN(MAX((tsurf_new(i) - RTT) / chasno, 0.), snow(i)) + ffonte(i) = fq_fonte * RLMLT / dtime snow(i) = max(0., snow(i) - fq_fonte) bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = tsurf_new(i) - fq_fonte * chasno - !IM cf JLD/ GKtest fonte aussi pour la glace + + !IM cf. JLD/ GKtest fonte aussi pour la glace IF (nisurf == is_sic .OR. nisurf == is_lic) THEN - fq_fonte = MAX((tsurf_new(i)-RTT)/chaice, 0.) - ffonte(i) = ffonte(i) + fq_fonte * RLMLT/dtime + fq_fonte = MAX((tsurf_new(i) - RTT) / chaice, 0.) + ffonte(i) = ffonte(i) + fq_fonte * RLMLT / dtime bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = RTT ENDIF - d_ts(i) = tsurf_new(i) - tsurf(i) + else + ffonte(i) = 0. endif - ! S'il y a une hauteur trop importante de neige, elle s'écoule - fqcalving(i) = max(0., snow(i) - snow_max)/dtime - snow(i)=min(snow(i), snow_max) - - IF (nisurf == is_ter) then - qsol(i) = qsol(i) + bil_eau_s(i) - run_off(i) = run_off(i) + MAX(qsol(i) - max_eau_sol, 0.) - qsol(i) = MIN(qsol(i), max_eau_sol) - else if (nisurf == is_lic) then + ! S'il y a une hauteur trop importante de neige, elle s'\'ecoule + fqcalving(i) = max(0., snow(i) - snow_max) / dtime + snow(i) = min(snow(i), snow_max) + enddo + + IF (nisurf == is_ter) then + qsol = MIN(qsol + bil_eau_s, max_eau_sol) + else if (nisurf == is_lic) then + if (.not. allocated(run_off_lic)) allocate(run_off_lic(knon)) + ! assumes that the fraction of land-ice does not change during the run + + do i = 1, knon run_off_lic(i) = (coeff_rel * fqcalving(i)) + & (1. - coeff_rel) * run_off_lic_0(i) run_off_lic_0(i) = run_off_lic(i) - run_off_lic(i) = run_off_lic(i) + bil_eau_s(i)/dtime - endif - enddo + run_off_lic(i) = run_off_lic(i) + bil_eau_s(i) / dtime + enddo + endif END SUBROUTINE fonte_neige