--- trunk/Sources/phylmd/Interface_surf/fonte_neige.f 2016/06/08 12:23:41 202 +++ trunk/Sources/phylmd/Interface_surf/fonte_neige.f 2016/08/30 12:52:46 206 @@ -30,10 +30,10 @@ real, intent(IN):: ps(:) ! (knon) pression au sol real, intent(IN):: precip_rain(:) ! (knon) - ! precipitation, liquid water mass flux (kg/m2/s), positive down + ! precipitation, liquid water mass flux (kg / m2 / s), positive down real, intent(IN):: precip_snow(:) ! (knon) - ! precipitation, solid water mass flux (kg/m2/s), positive down + ! precipitation, solid water mass flux (kg / m2 / s), positive down real, intent(INOUT):: snow(:) ! (knon) ! column-density of mass of snow, in kg m-2 @@ -58,7 +58,7 @@ real, intent(OUT):: fqcalving(:) ! (knon) ! flux d'eau "perdue" par la surface et n\'ecessaire pour limiter la - ! hauteur de neige, en kg/m2/s + ! hauteur de neige, en kg / m2 / s real, intent(OUT):: ffonte(:) ! (knon) ! flux thermique utilis\'é pour fondre la neige @@ -70,7 +70,7 @@ integer knon ! nombre de points \`a traiter real, parameter:: snow_max=3000. - ! Masse maximum de neige (kg/m2). Au dessus de ce seuil, la neige + ! Masse maximum de neige (kg / m2). Au dessus de ce seuil, la neige ! en exces "s'ecoule" (calving) integer i @@ -80,8 +80,8 @@ REAL bil_eau_s(size(ps)) ! in kg m-2 real snow_evap(size(ps)) ! in kg m-2 s-1 real, parameter:: t_coup = 273.15 - REAL, parameter:: chasno = 3.334E5/(2.3867E6*0.15) - REAL, parameter:: chaice = 3.334E5/(2.3867E6*0.15) + REAL, parameter:: chasno = 3.334E5 / (2.3867E6*0.15) + REAL, parameter:: chaice = 3.334E5 / (2.3867E6*0.15) real, parameter:: max_eau_sol = 150. ! in kg m-2 real coeff_rel @@ -95,16 +95,16 @@ size(run_off_lic_0)/), "fonte_neige knon") ! Initialisations - coeff_rel = dtime/(tau_calv * rday) + coeff_rel = dtime / (tau_calv * rday) bil_eau_s = 0. DO i = 1, knon IF (thermcep) THEN zdelta= rtt >= tsurf(i) zcvm5 = merge(R5IES*RLSTT, R5LES*RLVTT, zdelta) zcvm5 = zcvm5 / RCPD / (1. + RVTMP2*q1lay(i)) - zx_qs= r2es * FOEEW(tsurf(i), zdelta)/ps(i) + zx_qs= r2es * FOEEW(tsurf(i), zdelta) / ps(i) zx_qs=MIN(0.5, zx_qs) - zcor=1./(1.-retv*zx_qs) + zcor=1. / (1.-retv*zx_qs) zx_qs=zx_qs*zcor ELSE IF (tsurf(i) < t_coup) THEN @@ -135,22 +135,22 @@ do i = 1, knon if ((snow(i) > epsfra .OR. nisurf == is_sic & .OR. nisurf == is_lic) .AND. tsurf_new(i) >= RTT) then - fq_fonte = MIN(MAX((tsurf_new(i)-RTT)/chasno, 0.), snow(i)) - ffonte(i) = fq_fonte * RLMLT/dtime + fq_fonte = MIN(MAX((tsurf_new(i)-RTT) / chasno, 0.), snow(i)) + ffonte(i) = fq_fonte * RLMLT / dtime snow(i) = max(0., snow(i) - fq_fonte) bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = tsurf_new(i) - fq_fonte * chasno !IM cf JLD/ GKtest fonte aussi pour la glace IF (nisurf == is_sic .OR. nisurf == is_lic) THEN - fq_fonte = MAX((tsurf_new(i)-RTT)/chaice, 0.) - ffonte(i) = ffonte(i) + fq_fonte * RLMLT/dtime + fq_fonte = MAX((tsurf_new(i)-RTT) / chaice, 0.) + ffonte(i) = ffonte(i) + fq_fonte * RLMLT / dtime bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = RTT ENDIF endif ! S'il y a une hauteur trop importante de neige, elle s'\'ecoule - fqcalving(i) = max(0., snow(i) - snow_max)/dtime + fqcalving(i) = max(0., snow(i) - snow_max) / dtime snow(i)=min(snow(i), snow_max) IF (nisurf == is_ter) then @@ -160,7 +160,7 @@ run_off_lic(i) = (coeff_rel * fqcalving(i)) + & (1. - coeff_rel) * run_off_lic_0(i) run_off_lic_0(i) = run_off_lic(i) - run_off_lic(i) = run_off_lic(i) + bil_eau_s(i)/dtime + run_off_lic(i) = run_off_lic(i) + bil_eau_s(i) / dtime endif enddo