--- trunk/phylmd/Interface_surf/interfsurf_hq.f 2014/07/02 19:07:58 100 +++ trunk/phylmd/Interface_surf/interfsurf_hq.f 2014/07/07 17:45:21 101 @@ -4,13 +4,13 @@ contains - SUBROUTINE interfsurf_hq(itime, dtime, jour, rmu0, iim, jjm, nisurf, knon, & - knindex, pctsrf, rlat, debut, soil_model, nsoilmx, tsoil, qsol, & + SUBROUTINE interfsurf_hq(itime, dtime, jour, rmu0, nisurf, knon, & + knindex, pctsrf, rlat, debut, nsoilmx, tsoil, qsol, & u1_lay, v1_lay, temp_air, spechum, tq_cdrag, petAcoef, peqAcoef, & petBcoef, peqBcoef, precip_rain, precip_snow, fder, rugos, rugoro, & snow, qsurf, tsurf, p1lay, ps, radsol, evap, fluxsens, fluxlat, & dflux_l, dflux_s, tsurf_new, alb_new, alblw, z0_new, pctsrf_new, & - agesno, fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice) + agesno, fqcalving, ffonte, run_off_lic_0, flux_o, flux_g) ! Cette routine sert d'aiguillage entre l'atmosphère et la surface ! en général (sols continentaux, océans, glaces) pour les flux de @@ -20,41 +20,42 @@ USE abort_gcm_m, ONLY: abort_gcm USE albsno_m, ONLY: albsno + use calbeta_m, only: calbeta USE calcul_fluxs_m, ONLY: calcul_fluxs + use clesphys2, only: soil_model USE dimphy, ONLY: klon USE fonte_neige_m, ONLY: fonte_neige USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf - USE interface_surf, ONLY: coastalflow, riverflow, run_off, & - run_off_lic, conf_interface + USE interface_surf, ONLY: run_off, run_off_lic, conf_interface USE interfoce_lim_m, ONLY: interfoce_lim - USE interfoce_slab_m, ONLY: interfoce_slab USE interfsur_lim_m, ONLY: interfsur_lim + use soil_m, only: soil USE suphec_m, ONLY: rcpd, rlstt, rlvtt, rtt integer, intent(IN):: itime ! numero du pas de temps real, intent(IN):: dtime ! pas de temps de la physique (en s) integer, intent(IN):: jour ! jour dans l'annee en cours real, intent(IN):: rmu0(klon) ! cosinus de l'angle solaire zenithal - integer, intent(IN):: iim, jjm - ! iim, jjm nbres de pts de grille - integer, intent(IN):: nisurf - ! nisurf index de la surface a traiter (1 = sol continental) - integer, intent(IN):: knon - ! knon nombre de points de la surface a traiter + integer, intent(IN):: nisurf ! index de la surface a traiter + integer, intent(IN):: knon ! nombre de points de la surface a traiter + integer, intent(in):: knindex(klon) - ! knindex index des points de la surface a traiter + ! index des points de la surface a traiter + real, intent(IN):: pctsrf(klon, nbsrf) - ! pctsrf tableau des pourcentages de surface de chaque maille - real, dimension(klon), intent(IN):: rlat - ! rlat latitudes - logical, intent(IN):: debut - ! debut logical: 1er appel a la physique + ! tableau des pourcentages de surface de chaque maille + + real, intent(IN):: rlat(klon) ! latitudes + + logical, intent(IN):: debut ! 1er appel a la physique ! (si false calcul simplifie des fluxs sur les continents) - !! PB ajout pour soil - logical, intent(in):: soil_model - integer:: nsoilmx - REAL, DIMENSION(klon, nsoilmx):: tsoil - REAL, dimension(klon), intent(INOUT):: qsol + + integer, intent(in):: nsoilmx + REAL tsoil(klon, nsoilmx) + + REAL, intent(INOUT):: qsol(klon) + ! column-density of water in soil, in kg m-2 + real, dimension(klon), intent(IN):: u1_lay, v1_lay ! u1_lay vitesse u 1ere couche ! v1_lay vitesse v 1ere couche @@ -69,15 +70,19 @@ real, dimension(klon), intent(IN):: petBcoef, peqBcoef ! petBcoef coeff. B de la resolution de la CL pour t ! peqBcoef coeff. B de la resolution de la CL pour q - real, dimension(klon), intent(IN):: precip_rain, precip_snow - ! precip_rain precipitation liquide - ! precip_snow precipitation solide + + real, intent(IN):: precip_rain(klon) + ! precipitation, liquid water mass flux (kg/m2/s), positive down + + real, intent(IN):: precip_snow(klon) + ! precipitation, solid water mass flux (kg/m2/s), positive down + REAL, DIMENSION(klon), INTENT(INOUT):: fder ! fder derivee des flux (pour le couplage) real, dimension(klon), intent(IN):: rugos, rugoro ! rugos rugosite ! rugoro rugosite orographique - real, dimension(klon), intent(INOUT):: snow, qsurf + real, intent(INOUT):: snow(klon), qsurf(klon) real, dimension(klon), intent(IN):: tsurf, p1lay ! tsurf temperature de surface ! p1lay pression 1er niveau (milieu de couche) @@ -115,13 +120,9 @@ !IM: "slab" ocean real, dimension(klon), intent(OUT):: flux_o, flux_g - real, dimension(klon), intent(INOUT):: tslab - ! tslab temperature slab ocean - real, dimension(klon), intent(INOUT):: seaice ! glace de mer (kg/m2) ! Local: - real, allocatable, dimension(:), save:: tmp_tslab REAL, dimension(klon):: soilcap REAL, dimension(klon):: soilflux @@ -129,50 +130,39 @@ real, parameter:: t_grnd=271.35 real, dimension(klon):: zx_sl integer i - real, allocatable, dimension(:), save:: tmp_flux_o, tmp_flux_g - real, allocatable, dimension(:), save:: tmp_radsol - real, allocatable, dimension(:, :), save:: tmp_pctsrf_slab - ! pctsrf_slab pourcentages (0-1) des sous-surfaces dans le slab - ! tmp_pctsrf_slab = pctsrf_slab - real, allocatable, dimension(:), save:: tmp_seaice character (len = 20), save:: modname = 'interfsurf_hq' character (len = 80):: abort_message logical, save:: first_call = .true. - integer, save:: error integer:: ii - logical, save:: check = .false. real, dimension(klon):: cal, beta, dif_grnd, capsol - real, parameter:: calice=1.0/(5.1444e+06*0.15), tau_gl=86400.*5. - real, parameter:: calsno=1./(2.3867e+06*.15) + real, parameter:: calice=1.0/(5.1444e6 * 0.15), tau_gl=86400.*5. + real, parameter:: calsno=1./(2.3867e6 * 0.15) real, dimension(klon):: tsurf_temp real, dimension(klon):: alb_neig, alb_eau real, DIMENSION(klon):: zfra INTEGER, dimension(1):: iloc real, dimension(klon):: fder_prev - REAL, dimension(klon):: bidule !------------------------------------------------------------- - if (check) write(*, *) 'Entree ', modname - ! On doit commencer par appeler les schemas de surfaces continentales ! car l'ocean a besoin du ruissellement qui est y calcule if (first_call) then call conf_interface if (nisurf /= is_ter .and. klon > 1) then - write(*, *)' *** Warning ***' - write(*, *)' nisurf = ', nisurf, ' /= is_ter = ', is_ter - write(*, *)'or on doit commencer par les surfaces continentales' + print *, ' Warning:' + print *, ' nisurf = ', nisurf, ' /= is_ter = ', is_ter + print *, 'or on doit commencer par les surfaces continentales' abort_message='voir ci-dessus' call abort_gcm(modname, abort_message, 1) endif - if ( is_oce > is_sic ) then - write(*, *)' *** Warning ***' - write(*, *)' Pour des raisons de sequencement dans le code' - write(*, *)' l''ocean doit etre traite avant la banquise' - write(*, *)' or is_oce = ', is_oce, '> is_sic = ', is_sic + if (is_oce > is_sic) then + print *, 'Warning:' + print *, ' Pour des raisons de sequencement dans le code' + print *, ' l''ocean doit etre traite avant la banquise' + print *, ' or is_oce = ', is_oce, '> is_sic = ', is_sic abort_message='voir ci-dessus' call abort_gcm(modname, abort_message, 1) endif @@ -198,101 +188,21 @@ flux_o = 0. flux_g = 0. - if (.not. allocated(tmp_flux_o)) then - allocate(tmp_flux_o(klon), stat = error) - DO i=1, knon - tmp_flux_o(knindex(i))=flux_o(i) - ENDDO - if (error /= 0) then - abort_message='Pb allocation tmp_flux_o' - call abort_gcm(modname, abort_message, 1) - endif - endif - if (.not. allocated(tmp_flux_g)) then - allocate(tmp_flux_g(klon), stat = error) - DO i=1, knon - tmp_flux_g(knindex(i))=flux_g(i) - ENDDO - if (error /= 0) then - abort_message='Pb allocation tmp_flux_g' - call abort_gcm(modname, abort_message, 1) - endif - endif - if (.not. allocated(tmp_radsol)) then - allocate(tmp_radsol(klon), stat = error) - if (error /= 0) then - abort_message='Pb allocation tmp_radsol' - call abort_gcm(modname, abort_message, 1) - endif - endif - DO i=1, knon - tmp_radsol(knindex(i))=radsol(i) - ENDDO - if (.not. allocated(tmp_pctsrf_slab)) then - allocate(tmp_pctsrf_slab(klon, nbsrf), stat = error) - if (error /= 0) then - abort_message='Pb allocation tmp_pctsrf_slab' - call abort_gcm(modname, abort_message, 1) - endif - DO i=1, klon - tmp_pctsrf_slab(i, 1:nbsrf)=pctsrf(i, 1:nbsrf) - ENDDO - endif - - if (.not. allocated(tmp_seaice)) then - allocate(tmp_seaice(klon), stat = error) - if (error /= 0) then - abort_message='Pb allocation tmp_seaice' - call abort_gcm(modname, abort_message, 1) - endif - DO i=1, klon - tmp_seaice(i)=seaice(i) - ENDDO - endif - - if (.not. allocated(tmp_tslab)) then - allocate(tmp_tslab(klon), stat = error) - if (error /= 0) then - abort_message='Pb allocation tmp_tslab' - call abort_gcm(modname, abort_message, 1) - endif - endif - DO i=1, klon - tmp_tslab(i)=tslab(i) - ENDDO - ! Aiguillage vers les differents schemas de surface if (nisurf == is_ter) then ! Surface "terre" appel a l'interface avec les sols continentaux ! allocation du run-off - if (.not. allocated(coastalflow)) then - allocate(coastalflow(knon), stat = error) - if (error /= 0) then - abort_message='Pb allocation coastalflow' - call abort_gcm(modname, abort_message, 1) - endif - allocate(riverflow(knon), stat = error) - if (error /= 0) then - abort_message='Pb allocation riverflow' - call abort_gcm(modname, abort_message, 1) - endif - allocate(run_off(knon), stat = error) - if (error /= 0) then - abort_message='Pb allocation run_off' - call abort_gcm(modname, abort_message, 1) - endif - - run_off=0.0 - else if (size(coastalflow) /= knon) then - write(*, *)'Bizarre, le nombre de points continentaux' - write(*, *)'a change entre deux appels. J''arrete ...' + if (.not. allocated(run_off)) then + allocate(run_off(knon)) + run_off = 0. + else if (size(run_off) /= knon) then + print *, 'Bizarre, le nombre de points continentaux' + print *, 'a change entre deux appels. J''arrete ' abort_message='voir ci-dessus' call abort_gcm(modname, abort_message, 1) endif - coastalflow = 0. - riverflow = 0. ! Calcul age de la neige @@ -302,37 +212,33 @@ debut, alb_new, z0_new) ! calcul snow et qsurf, hydrol adapté - CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) + CALL calbeta(nisurf, snow(:knon), qsol(:knon), beta(:knon), & + capsol(:knon), dif_grnd(:knon)) IF (soil_model) THEN - CALL soil(dtime, nisurf, knon, snow, tsurf, tsoil, soilcap, & - soilflux) + CALL soil(dtime, nisurf, knon, snow, tsurf, tsoil, soilcap, soilflux) cal(1:knon) = RCPD / soilcap(1:knon) radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) ELSE cal = RCPD * capsol ENDIF - CALL calcul_fluxs( klon, knon, nisurf, dtime, & - tsurf, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsurf, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) - - CALL fonte_neige( klon, knon, nisurf, dtime, & - tsurf, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsol, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & - fqcalving, ffonte, run_off_lic_0) + CALL calcul_fluxs(klon, knon, nisurf, dtime, tsurf, p1lay, cal, beta, & + tq_cdrag, ps, precip_rain, precip_snow, snow, qsurf, radsol, & + dif_grnd, temp_air, spechum, u1_lay, v1_lay, petAcoef, peqAcoef, & + petBcoef, peqBcoef, tsurf_new, evap, fluxlat, fluxsens, dflux_s, & + dflux_l) + + CALL fonte_neige(klon, knon, nisurf, dtime, tsurf, p1lay, beta, & + tq_cdrag, ps, precip_rain(:knon), precip_snow, snow, qsol(:knon), & + temp_air, spechum, u1_lay, v1_lay, petAcoef, peqAcoef, petBcoef, & + peqBcoef, tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) call albsno(klon, knon, dtime, agesno, alb_neig, precip_snow) where (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. - zfra(1:knon) = max(0.0, min(1.0, snow(1:knon)/(snow(1:knon)+10.0))) + zfra(1:knon) = max(0.0, min(1.0, snow(1:knon)/(snow(1:knon) + 10.0))) alb_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & alb_new(1 : knon)*(1.0-zfra(1:knon)) - z0_new = sqrt(z0_new**2+rugoro**2) + z0_new = sqrt(z0_new**2 + rugoro**2) alblw(1 : knon) = alb_new(1 : knon) ! Remplissage des pourcentages de surface @@ -350,35 +256,26 @@ alb_neig = 0. agesno = 0. - call calcul_fluxs( klon, knon, nisurf, dtime, & - tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsurf, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) + call calcul_fluxs(klon, knon, nisurf, dtime, tsurf_temp, p1lay, cal, & + beta, tq_cdrag, ps, precip_rain, precip_snow, snow, qsurf, & + radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, petAcoef, & + peqAcoef, petBcoef, peqBcoef, tsurf_new, evap, fluxlat, fluxsens, & + dflux_s, dflux_l) fder_prev = fder fder = fder_prev + dflux_s + dflux_l iloc = maxloc(fder(1:klon)) - if (check.and.fder(iloc(1))> 0.) then - WRITE(*, *)'**** Debug fder****' - WRITE(*, *)'max fder(', iloc(1), ') = ', fder(iloc(1)) - WRITE(*, *)'fder_prev, dflux_s, dflux_l', fder_prev(iloc(1)), & - dflux_s(iloc(1)), dflux_l(iloc(1)) - endif !IM: flux ocean-atmosphere utile pour le "slab" ocean DO i=1, knon zx_sl(i) = RLVTT if (tsurf_new(i) .LT. RTT) zx_sl(i) = RLSTT flux_o(i) = fluxsens(i)-evap(i)*zx_sl(i) - tmp_flux_o(knindex(i)) = flux_o(i) - tmp_radsol(knindex(i))=radsol(i) ENDDO ! calcul albedo - if ( minval(rmu0) == maxval(rmu0) .and. minval(rmu0) == -999.999 ) then + if (minval(rmu0) == maxval(rmu0) .and. minval(rmu0) == -999.999) then CALL alboc(FLOAT(jour), rlat, alb_eau) else ! cycle diurne CALL alboc_cd(rmu0, alb_eau) @@ -390,15 +287,11 @@ z0_new = sqrt(rugos**2 + rugoro**2) alblw(1:knon) = alb_new(1:knon) else if (nisurf == is_sic) then - if (check) write(*, *)'sea ice, nisurf = ', nisurf - ! Surface "glace de mer" appel a l'interface avec l'ocean ! ! lecture conditions limites - CALL interfoce_lim(itime, dtime, jour, & - klon, nisurf, knon, knindex, & - debut, & - tsurf_new, pctsrf_new) + CALL interfoce_lim(itime, dtime, jour, klon, nisurf, knon, knindex, & + debut, tsurf_new, pctsrf_new) !IM cf LF DO ii = 1, knon @@ -412,7 +305,8 @@ endif enddo - CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) + CALL calbeta(nisurf, snow(:knon), qsol(:knon), beta(:knon), & + capsol(:knon), dif_grnd(:knon)) IF (soil_model) THEN CALL soil(dtime, nisurf, knon, snow, tsurf_new, tsoil, soilcap, & @@ -429,49 +323,29 @@ tsurf_temp = tsurf_new beta = 1.0 - CALL calcul_fluxs( klon, knon, nisurf, dtime, & - tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsurf, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) + CALL calcul_fluxs(klon, knon, nisurf, dtime, tsurf_temp, p1lay, cal, & + beta, tq_cdrag, ps, precip_rain, precip_snow, snow, qsurf, & + radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, petAcoef, & + peqAcoef, petBcoef, peqBcoef, tsurf_new, evap, fluxlat, fluxsens, & + dflux_s, dflux_l) !IM: flux entre l'ocean et la glace de mer pour le "slab" ocean DO i = 1, knon flux_g(i) = 0.0 - - !IM: faire dependre le coefficient de conduction de la glace de mer - ! de l'epaisseur de la glace de mer, dans l'hypothese ou le coeff. - ! actuel correspond a 3m de glace de mer, cf. L.Li - - ! IF(1.EQ.0) THEN - ! IF(siceh(i).GT.0.) THEN - ! new_dif_grnd(i) = dif_grnd(i)*3./siceh(i) - ! ELSE - ! new_dif_grnd(i) = 0. - ! ENDIF - ! ENDIF !(1.EQ.0) THEN - - IF (cal(i).GT.1.0e-15) flux_g(i)=(tsurf_new(i)-t_grnd) & - * dif_grnd(i) *RCPD/cal(i) - ! & * new_dif_grnd(i) *RCPD/cal(i) - tmp_flux_g(knindex(i))=flux_g(i) - tmp_radsol(knindex(i))=radsol(i) + IF (cal(i) > 1e-15) flux_g(i) = (tsurf_new(i) - t_grnd) & + * dif_grnd(i) * RCPD / cal(i) ENDDO - CALL fonte_neige( klon, knon, nisurf, dtime, & - tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsol, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & - fqcalving, ffonte, run_off_lic_0) + CALL fonte_neige(klon, knon, nisurf, dtime, tsurf_temp, p1lay, beta, & + tq_cdrag, ps, precip_rain(:knon), precip_snow, snow, qsol(:knon), & + temp_air, spechum, u1_lay, v1_lay, petAcoef, peqAcoef, petBcoef, & + peqBcoef, tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) ! calcul albedo CALL albsno(klon, knon, dtime, agesno, alb_neig, precip_snow) WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. - zfra(1:knon) = MAX(0.0, MIN(1.0, snow(1:knon)/(snow(1:knon)+10.0))) + zfra(1:knon) = MAX(0.0, MIN(1.0, snow(1:knon)/(snow(1:knon) + 10.0))) alb_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & 0.6 * (1.0-zfra(1:knon)) @@ -479,30 +353,16 @@ fder = fder_prev + dflux_s + dflux_l iloc = maxloc(fder(1:klon)) - if (check.and.fder(iloc(1))> 0.) then - WRITE(*, *)'**** Debug fder ****' - WRITE(*, *)'max fder(', iloc(1), ') = ', fder(iloc(1)) - WRITE(*, *)'fder_prev, dflux_s, dflux_l', fder_prev(iloc(1)), & - dflux_s(iloc(1)), dflux_l(iloc(1)) - endif - ! 2eme appel a interfoce pour le cumul et le passage des flux a l'ocean z0_new = 0.002 - z0_new = SQRT(z0_new**2+rugoro**2) + z0_new = SQRT(z0_new**2 + rugoro**2) alblw(1:knon) = alb_new(1:knon) else if (nisurf == is_lic) then - - if (check) write(*, *)'glacier, nisurf = ', nisurf - if (.not. allocated(run_off_lic)) then - allocate(run_off_lic(knon), stat = error) - if (error /= 0) then - abort_message='Pb allocation run_off_lic' - call abort_gcm(modname, abort_message, 1) - endif + allocate(run_off_lic(knon)) run_off_lic = 0. endif @@ -519,53 +379,37 @@ beta = 1.0 dif_grnd = 0.0 - call calcul_fluxs( klon, knon, nisurf, dtime, & - tsurf, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsurf, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) - - call fonte_neige( klon, knon, nisurf, dtime, & - tsurf, p1lay, cal, beta, tq_cdrag, ps, & - precip_rain, precip_snow, snow, qsol, & - radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & - petAcoef, peqAcoef, petBcoef, peqBcoef, & - tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & - fqcalving, ffonte, run_off_lic_0) - - ! passage du run-off des glaciers calcule dans fonte_neige au coupleur - bidule=0. - bidule(1:knon)= run_off_lic(1:knon) + call calcul_fluxs(klon, knon, nisurf, dtime, tsurf, p1lay, cal, beta, & + tq_cdrag, ps, precip_rain, precip_snow, snow, qsurf, radsol, & + dif_grnd, temp_air, spechum, u1_lay, v1_lay, petAcoef, peqAcoef, & + petBcoef, peqBcoef, tsurf_new, evap, fluxlat, fluxsens, dflux_s, & + dflux_l) + + call fonte_neige(klon, knon, nisurf, dtime, tsurf, p1lay, beta, & + tq_cdrag, ps, precip_rain(:knon), precip_snow, snow, qsol(:knon), & + temp_air, spechum, u1_lay, v1_lay, petAcoef, peqAcoef, petBcoef, & + peqBcoef, tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) ! calcul albedo - CALL albsno(klon, knon, dtime, agesno, alb_neig, precip_snow) WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. - zfra(1:knon) = MAX(0.0, MIN(1.0, snow(1:knon)/(snow(1:knon)+10.0))) + zfra(1:knon) = MAX(0.0, MIN(1.0, snow(1:knon)/(snow(1:knon) + 10.0))) alb_new(1 : knon) = alb_neig(1 : knon)*zfra(1:knon) + & 0.6 * (1.0-zfra(1:knon)) !IM: plusieurs choix/tests sur l'albedo des "glaciers continentaux" - ! alb_new(1 : knon) = 0.6 !IM cf FH/GK - ! alb_new(1 : knon) = 0.82 - ! alb_new(1 : knon) = 0.77 !211003 Ksta0.77 - ! alb_new(1 : knon) = 0.8 !KstaTER0.8 & LMD_ARMIP5 !IM: KstaTER0.77 & LMD_ARMIP6 alb_new(1 : knon) = 0.77 - ! Rugosite - z0_new = rugoro ! Remplissage des pourcentages de surface - pctsrf_new(:, nisurf) = pctsrf(:, nisurf) alblw(1:knon) = alb_new(1:knon) else - write(*, *)'Index surface = ', nisurf + print *, 'Index surface = ', nisurf abort_message = 'Index surface non valable' call abort_gcm(modname, abort_message, 1) endif