--- trunk/Sources/phylmd/Interface_surf/interfsurf_hq.f 2017/04/20 14:44:47 221 +++ trunk/phylmd/Interface_surf/interfsurf_hq.f 2018/08/02 15:55:01 300 @@ -4,12 +4,11 @@ contains - SUBROUTINE interfsurf_hq(dtime, julien, rmu0, nisurf, knon, knindex, debut, & - tsoil, qsol, u1_lay, v1_lay, temp_air, spechum, tq_cdrag, petAcoef, & - peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, fder, rugos, & - rugoro, snow, qsurf, ts, p1lay, ps, radsol, evap, flux_t, fluxlat, & - dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, & - fqcalving, ffonte, run_off_lic_0) + SUBROUTINE interfsurf_hq(julien, mu0, nisurf, knindex, debut, tsoil, qsol, & + u1_lay, v1_lay, temp_air, spechum, tq_cdrag, tAcoef, qAcoef, tBcoef, & + qBcoef, precip_rain, precip_snow, rugos, rugoro, snow, qsurf, ts, & + p1lay, ps, radsol, evap, flux_t, fluxlat, dflux_l, dflux_s, tsurf_new, & + albedo, z0_new, pctsrf_new_sic, agesno, fqcalving, ffonte, run_off_lic_0) ! Cette routine sert d'aiguillage entre l'atmosph\`ere et la surface ! en g\'en\'eral (sols continentaux, oc\'eans, glaces) pour les flux de @@ -20,23 +19,19 @@ USE abort_gcm_m, ONLY: abort_gcm use alboc_cd_m, only: alboc_cd USE albsno_m, ONLY: albsno - use calbeta_m, only: calbeta USE calcul_fluxs_m, ONLY: calcul_fluxs - use clesphys2, only: soil_model USE dimphy, ONLY: klon USE fonte_neige_m, ONLY: fonte_neige USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter - USE interface_surf, ONLY: conf_interface + USE conf_interface_m, ONLY: conf_interface USE interfsur_lim_m, ONLY: interfsur_lim - use read_sst_m, only: read_sst + use limit_read_sst_m, only: limit_read_sst use soil_m, only: soil USE suphec_m, ONLY: rcpd, rtt - real, intent(IN):: dtime ! pas de temps de la physique (en s) integer, intent(IN):: julien ! jour dans l'annee en cours - real, intent(IN):: rmu0(klon) ! cosinus de l'angle solaire zenithal + real, intent(IN):: mu0(:) ! (knon) cosinus de l'angle solaire zenithal integer, intent(IN):: nisurf ! index de la surface a traiter - integer, intent(IN):: knon ! nombre de points de la surface a traiter integer, intent(in):: knindex(:) ! (knon) ! index des points de la surface a traiter @@ -46,116 +41,101 @@ REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) - REAL, intent(INOUT):: qsol(klon) + REAL, intent(INOUT):: qsol(:) ! (knon) ! column-density of water in soil, in kg m-2 - real, dimension(klon), intent(IN):: u1_lay, v1_lay - ! u1_lay vitesse u 1ere couche - ! v1_lay vitesse v 1ere couche - real, dimension(klon), intent(IN):: temp_air, spechum - ! temp_air temperature de l'air 1ere couche - ! spechum humidite specifique 1ere couche - real, dimension(klon), intent(INOUT):: tq_cdrag ! coefficient d'echange + real, intent(IN):: u1_lay(:), v1_lay(:) ! (knon) vitesse 1ere couche - real, dimension(klon), intent(IN):: petAcoef, peqAcoef + real, intent(IN):: temp_air(:) ! (knon) temperature de l'air 1ere couche + real, intent(IN):: spechum(:) ! (knon) humidite specifique 1ere couche + real, intent(IN):: tq_cdrag(:) ! (knon) coefficient d'echange + + real, intent(IN):: tAcoef(:), qAcoef(:) ! (knon) ! coefficients A de la r\'esolution de la couche limite pour t et q - real, dimension(klon), intent(IN):: petBcoef, peqBcoef + real, intent(IN):: tBcoef(:), qBcoef(:) ! (knon) ! coefficients B de la r\'esolution de la couche limite pour t et q - real, intent(IN):: precip_rain(klon) + real, intent(IN):: precip_rain(:) ! (knon) ! precipitation, liquid water mass flux (kg / m2 / s), positive down - real, intent(IN):: precip_snow(klon) + real, intent(IN):: precip_snow(:) ! (knon) ! precipitation, solid water mass flux (kg / m2 / s), positive down - REAL, INTENT(INOUT):: fder(klon) ! derivee des flux (pour le couplage) - real, intent(IN):: rugos(klon) ! rugosite - real, intent(IN):: rugoro(klon) ! rugosite orographique + real, intent(IN):: rugos(:) ! (knon) rugosite + real, intent(IN):: rugoro(:) ! (knon) rugosite orographique real, intent(INOUT):: snow(:) ! (knon) - real, intent(INOUT):: qsurf(klon) + real, intent(OUT):: qsurf(:) ! (knon) real, intent(IN):: ts(:) ! (knon) temp\'erature de surface - real, intent(IN):: p1lay(klon) ! pression 1er niveau (milieu de couche) - real, dimension(klon), intent(IN):: ps ! pression au sol - - REAL, DIMENSION(klon), INTENT(INOUT):: radsol - ! rayonnement net au sol (LW + SW) - + real, intent(IN):: p1lay(:) ! (knon) pression 1er niveau (milieu de couche) + real, intent(IN):: ps(:) ! (knon) pression au sol + REAL, INTENT(IN):: radsol(:) ! (knon) rayonnement net au sol (LW + SW) real, intent(OUT):: evap(:) ! (knon) evaporation totale real, intent(OUT):: flux_t(:) ! (knon) flux de chaleur sensible ! (Cp T) à la surface, positif vers le bas, W / m2 - + real, intent(OUT):: fluxlat(:) ! (knon) flux de chaleur latente - real, dimension(klon), intent(OUT):: dflux_l, dflux_s + real, intent(OUT):: dflux_l(:), dflux_s(:) ! (knon) real, intent(OUT):: tsurf_new(:) ! (knon) temp\'erature au sol real, intent(OUT):: albedo(:) ! (knon) albedo - real, intent(OUT):: z0_new(klon) ! surface roughness + real, intent(OUT):: z0_new(:) ! (knon) surface roughness - real, intent(in):: pctsrf_new_sic(:) ! (klon) + real, intent(in):: pctsrf_new_sic(:) ! (knon) ! nouvelle repartition des surfaces real, intent(INOUT):: agesno(:) ! (knon) + real, intent(OUT):: fqcalving(:) ! (knon) ! Flux d'eau "perdue" par la surface et n\'ecessaire pour limiter la ! hauteur de neige, en kg / m2 / s - real, dimension(klon), intent(INOUT):: fqcalving - ! Flux thermique utiliser pour fondre la neige - real, dimension(klon), intent(INOUT):: ffonte + real, intent(OUT):: ffonte(:) ! (knon) + ! flux thermique utilis\'e pour fondre la neige - real, dimension(klon), intent(INOUT):: run_off_lic_0 + real, intent(INOUT):: run_off_lic_0(:) ! (knon) ! run_off_lic_0 runoff glacier du pas de temps precedent ! Local: - REAL soilcap(knon) - REAL soilflux(knon) + integer knon ! nombre de points de la surface a traiter + REAL soilcap(size(knindex)) ! (knon) + REAL soilflux(size(knindex)) ! (knon) logical:: first_call = .true. integer ii - real cal(knon) - real beta(klon) ! evap reelle - real dif_grnd(klon), capsol(klon) - real, parameter:: calice = 1. / (5.1444e6 * 0.15), tau_gl = 86400. * 5. - real, parameter:: calsno = 1. / (2.3867e6 * 0.15) - real tsurf_temp(knon) - real alb_neig(knon) - real zfra(knon) + real cal(size(knindex)) ! (knon) + real beta(size(knindex)) ! (knon) evap reelle + real tsurf(size(knindex)) ! (knon) + real alb_neig(size(knindex)) ! (knon) + real zfra(size(knindex)) ! (knon) REAL, PARAMETER:: fmagic = 1. ! facteur magique pour r\'egler l'alb\'edo + REAL, PARAMETER:: max_eau_sol = 150. ! in kg m-2 + REAL, PARAMETER:: tau_gl = 86400. * 5. !------------------------------------------------------------- - ! On doit commencer par appeler les schemas de surfaces continentales - ! car l'ocean a besoin du ruissellement qui est y calcule + knon = size(knindex) + + ! On doit commencer par appeler les sch\'emas de surfaces + ! continentales car l'oc\'ean a besoin du ruissellement. if (first_call) then call conf_interface if (nisurf /= is_ter .and. klon > 1) then print *, ' nisurf = ', nisurf, ' /= is_ter = ', is_ter - print *, 'or on doit commencer par les surfaces continentales' call abort_gcm("interfsurf_hq", & - 'On doit commencer par les surfaces continentales') + 'On doit commencer par les surfaces continentales.') endif if (is_oce > is_sic) then print *, 'is_oce = ', is_oce, '> is_sic = ', is_sic call abort_gcm("interfsurf_hq", & - "L'ocean doit etre traite avant la banquise") + "L'oc\'ean doit \^etre trait\'e avant la banquise.") endif first_call = .false. endif - ! Initialisations diverses - - ffonte(1:knon) = 0. - fqcalving(1:knon) = 0. - cal = 999999. - beta = 999999. - dif_grnd = 999999. - capsol = 999999. - z0_new = 999999. - ! Aiguillage vers les differents schemas de surface select case (nisurf) @@ -167,31 +147,20 @@ ! Read albedo from the file containing boundary conditions then ! add the albedo of snow: - call interfsur_lim(dtime, julien, knindex, debut, albedo, z0_new) + call interfsur_lim(julien, knindex, debut, albedo, z0_new) - ! Calcul de snow et qsurf, hydrologie adapt\'ee - CALL calbeta(is_ter, snow, qsol(:knon), beta(:knon), & - capsol(:knon), dif_grnd(:knon)) - - IF (soil_model) THEN - CALL soil(dtime, is_ter, snow, ts, tsoil, soilcap, soilflux) - cal = RCPD / soilcap - radsol(1:knon) = radsol(1:knon) + soilflux - ELSE - cal = RCPD * capsol(:knon) - ENDIF - - CALL calcul_fluxs(dtime, ts, p1lay(:knon), cal, beta(:knon), & - tq_cdrag(:knon), ps(:knon), qsurf(:knon), radsol(:knon), & - dif_grnd(:knon), temp_air(:knon), spechum(:knon), u1_lay(:knon), & - v1_lay(:knon), petAcoef(:knon), peqAcoef(:knon), petBcoef(:knon), & - peqBcoef(:knon), tsurf_new, evap, fluxlat, flux_t, & - dflux_s(:knon), dflux_l(:knon)) - CALL fonte_neige(is_ter, dtime, precip_rain(:knon), & - precip_snow(:knon), snow, qsol(:knon), tsurf_new, evap, & - fqcalving(:knon), ffonte(:knon), run_off_lic_0(:knon)) + beta = min(2. * qsol / max_eau_sol, 1.) + CALL soil(is_ter, snow, ts, tsoil, soilcap, soilflux) + cal = RCPD / soilcap + + CALL calcul_fluxs(ts, p1lay, cal, beta, tq_cdrag, ps, qsurf, & + radsol + soilflux, temp_air, spechum, u1_lay, v1_lay, tAcoef, & + qAcoef, tBcoef, qBcoef, tsurf_new, evap, fluxlat, flux_t, dflux_s, & + dflux_l, dif_grnd = 0.) + CALL fonte_neige(is_ter, precip_rain, precip_snow, snow, qsol, & + tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) - call albsno(dtime, agesno, alb_neig, precip_snow(:knon)) + call albsno(agesno, alb_neig, precip_snow) where (snow < 0.0001) agesno = 0. zfra = max(0., min(1., snow / (snow + 10.))) albedo = alb_neig * zfra + albedo * (1. - zfra) @@ -199,95 +168,64 @@ case (is_oce) ! Surface "oc\'ean", appel \`a l'interface avec l'oc\'ean - call read_sst(julien, knindex, tsurf_temp) + ffonte = 0. + call limit_read_sst(julien, knindex, tsurf) cal = 0. beta = 1. - dif_grnd = 0. + call calcul_fluxs(tsurf, p1lay, cal, beta, tq_cdrag, ps, qsurf, radsol, & + temp_air, spechum, u1_lay, v1_lay, tAcoef, qAcoef, tBcoef, qBcoef, & + tsurf_new, evap, fluxlat, flux_t, dflux_s, dflux_l, dif_grnd = 0.) agesno = 0. - call calcul_fluxs(dtime, tsurf_temp, p1lay(:knon), cal, & - beta(:knon), tq_cdrag(:knon), ps(:knon), qsurf(:knon), & - radsol(:knon), dif_grnd(:knon), temp_air(:knon), spechum(:knon), & - u1_lay(:knon), v1_lay(:knon), petAcoef(:knon), peqAcoef(:knon), & - petBcoef(:knon), peqBcoef(:knon), tsurf_new, evap, & - fluxlat, flux_t, dflux_s(:knon), dflux_l(:knon)) - fder = fder + dflux_s + dflux_l - albedo = alboc_cd(rmu0(knindex)) * fmagic + albedo = alboc_cd(mu0) * fmagic z0_new = sqrt(rugos**2 + rugoro**2) + fqcalving = 0. case (is_sic) ! Surface "glace de mer" appel a l'interface avec l'ocean DO ii = 1, knon - IF (pctsrf_new_sic(knindex(ii)) < EPSFRA) then + IF (pctsrf_new_sic(ii) < EPSFRA) then snow(ii) = 0. tsurf_new(ii) = RTT - 1.8 - IF (soil_model) tsoil(ii, :) = RTT - 1.8 + tsoil(ii, :) = RTT - 1.8 else tsurf_new(ii) = ts(ii) endif enddo - CALL calbeta(is_sic, snow, qsol(:knon), beta(:knon), & - capsol(:knon), dif_grnd(:knon)) - - IF (soil_model) THEN - CALL soil(dtime, is_sic, snow, tsurf_new, tsoil, soilcap, & - soilflux) - cal = RCPD / soilcap - radsol(1:knon) = radsol(1:knon) + soilflux - dif_grnd = 0. - ELSE - dif_grnd = 1. / tau_gl - cal = RCPD * calice - WHERE (snow > 0.) cal = RCPD * calsno - ENDIF - tsurf_temp = tsurf_new + CALL soil(is_sic, snow, tsurf_new, tsoil, soilcap, soilflux) + cal = RCPD / soilcap + tsurf = tsurf_new beta = 1. - - CALL calcul_fluxs(dtime, tsurf_temp, p1lay(:knon), cal, & - beta(:knon), tq_cdrag(:knon), ps(:knon), qsurf(:knon), & - radsol(:knon), dif_grnd(:knon), temp_air(:knon), spechum(:knon), & - u1_lay(:knon), v1_lay(:knon), petAcoef(:knon), peqAcoef(:knon), & - petBcoef(:knon), peqBcoef(:knon), tsurf_new, evap, & - fluxlat, flux_t, dflux_s(:knon), dflux_l(:knon)) - CALL fonte_neige(is_sic, dtime, precip_rain(:knon), & - precip_snow(:knon), snow, qsol(:knon), tsurf_new, evap, & - fqcalving(:knon), ffonte(:knon), run_off_lic_0(:knon)) + CALL calcul_fluxs(tsurf, p1lay, cal, beta, tq_cdrag, ps, qsurf, & + radsol + soilflux, temp_air, spechum, u1_lay, v1_lay, tAcoef, & + qAcoef, tBcoef, qBcoef, tsurf_new, evap, fluxlat, flux_t, dflux_s, & + dflux_l, dif_grnd = 1. / tau_gl) + CALL fonte_neige(is_sic, precip_rain, precip_snow, snow, qsol, & + tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) ! Compute the albedo: - CALL albsno(dtime, agesno, alb_neig, precip_snow(:knon)) + CALL albsno(agesno, alb_neig, precip_snow) WHERE (snow < 0.0001) agesno = 0. zfra = MAX(0., MIN(1., snow / (snow + 10.))) albedo = alb_neig * zfra + 0.6 * (1. - zfra) - fder = fder + dflux_s + dflux_l z0_new = SQRT(0.002**2 + rugoro**2) case (is_lic) ! Surface "glacier continentaux" appel a l'interface avec le sol - IF (soil_model) THEN - CALL soil(dtime, is_lic, snow, ts, tsoil, soilcap, soilflux) - cal = RCPD / soilcap - radsol(1:knon) = radsol(1:knon) + soilflux - ELSE - cal = RCPD * calice - WHERE (snow > 0.) cal = RCPD * calsno - ENDIF + CALL soil(is_lic, snow, ts, tsoil, soilcap, soilflux) + cal = RCPD / soilcap beta = 1. - dif_grnd = 0. - - call calcul_fluxs(dtime, ts, p1lay(:knon), cal, & - beta(:knon), tq_cdrag(:knon), ps(:knon), qsurf(:knon), & - radsol(:knon), dif_grnd(:knon), temp_air(:knon), spechum(:knon), & - u1_lay(:knon), v1_lay(:knon), petAcoef(:knon), peqAcoef(:knon), & - petBcoef(:knon), peqBcoef(:knon), tsurf_new, evap, & - fluxlat, flux_t, dflux_s(:knon), dflux_l(:knon)) - call fonte_neige(is_lic, dtime, precip_rain(:knon), & - precip_snow(:knon), snow, qsol(:knon), tsurf_new, evap, & - fqcalving(:knon), ffonte(:knon), run_off_lic_0(:knon)) + call calcul_fluxs(ts, p1lay, cal, beta, tq_cdrag, ps, qsurf, & + radsol + soilflux, temp_air, spechum, u1_lay, v1_lay, tAcoef, & + qAcoef, tBcoef, qBcoef, tsurf_new, evap, fluxlat, flux_t, dflux_s, & + dflux_l, dif_grnd = 0.) + call fonte_neige(is_lic, precip_rain, precip_snow, snow, qsol, & + tsurf_new, evap, fqcalving, ffonte, run_off_lic_0) ! calcul albedo - CALL albsno(dtime, agesno, alb_neig, precip_snow(:knon)) + CALL albsno(agesno, alb_neig, precip_snow) WHERE (snow < 0.0001) agesno = 0. albedo = 0.77