/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f90
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/Sources/phylmd/clmain.f revision 243 by guez, Tue Nov 14 14:38:36 2017 UTC trunk/phylmd/Interface_surf/pbl_surface.f revision 303 by guez, Thu Sep 6 14:25:07 2018 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &    SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &         rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &         oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
        trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)  
13    
14      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS)
16        ! Date: Aug. 18th, 1993
17      ! Objet : interface de couche limite (diffusion verticale)      ! Objet : interface de couche limite (diffusion verticale)
18    
19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
# Line 21  contains Line 21  contains
21      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! de sol.      ! de sol.
23    
24        use cdrag_m, only: cdrag
25      use clqh_m, only: clqh      use clqh_m, only: clqh
26      use clvent_m, only: clvent      use clvent_m, only: clvent
27      use coefkz_m, only: coefkz      use coef_diff_turb_m, only: coef_diff_turb
     use coefkzmin_m, only: coefkzmin  
     use coefkz2_m, only: coefkz2  
28      USE conf_gcm_m, ONLY: lmt_pas      USE conf_gcm_m, ONLY: lmt_pas
29      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
30      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon
31      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
32      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
33        USE histwrite_phy_m, ONLY: histwrite_phy
34      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35      USE interfoce_lim_m, ONLY: interfoce_lim      USE interfoce_lim_m, ONLY: interfoce_lim
36        use phyetat0_m, only: zmasq
37      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
38      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg
39      use time_phylmdz, only: itap      use time_phylmdz, only: itap
     use ustarhb_m, only: ustarhb  
     use yamada4_m, only: yamada4  
   
     REAL, INTENT(IN):: dtime ! interval du temps (secondes)  
40    
41      REAL, INTENT(inout):: pctsrf(klon, nbsrf)      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
42      ! tableau des pourcentages de surface de chaque maille      ! tableau des pourcentages de surface de chaque maille
# Line 51  contains Line 48  contains
48      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
49      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
50      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
     REAL, INTENT(IN):: ksta, ksta_ter  
     LOGICAL, INTENT(IN):: ok_kzmin  
51    
52      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
53      ! soil temperature of surface fraction      ! soil temperature of surface fraction
# Line 79  contains Line 74  contains
74      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
75      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
76    
77      REAL d_t(klon, klev), d_q(klon, klev)      REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
78      ! d_t------output-R- le changement pour "t"      ! changement pour t et q
     ! d_q------output-R- le changement pour "q"  
79    
80      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
81      ! changement pour "u" et "v"      ! changement pour "u" et "v"
# Line 89  contains Line 83  contains
83      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
84    
85      REAL, intent(out):: flux_t(klon, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
86      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
87      ! le bas) à la surface      ! vers le bas) à la surface
88    
89      REAL, intent(out):: flux_q(klon, nbsrf)      REAL, intent(out):: flux_q(klon, nbsrf)
90      ! flux de vapeur d'eau (kg / m2 / s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
# Line 101  contains Line 95  contains
95      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
96      real q2(klon, klev + 1, nbsrf)      real q2(klon, klev + 1, nbsrf)
97    
98      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      ! Ocean slab:
99      ! dflux_t derive du flux sensible      REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible
100      ! dflux_q derive du flux latent      REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent
     ! IM "slab" ocean  
101    
102      REAL, intent(out):: ycoefh(:, 2:) ! (klon, 2:klev)      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
103      ! Pour pouvoir extraire les coefficients d'\'echange, le champ      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
104      ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de      ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
105      ! ce champ sur les quatre sous-surfaces du mod\`ele.      ! ce champ sur les quatre sous-surfaces du mod\`ele.
106    
107      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
# Line 125  contains Line 118  contains
118      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
119      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
120      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
     REAL trmb1(klon, nbsrf)  
     ! trmb1-------deep_cape  
     REAL trmb2(klon, nbsrf)  
     ! trmb2--------inhibition  
     REAL trmb3(klon, nbsrf)  
     ! trmb3-------Point Omega  
121      REAL plcl(klon, nbsrf)      REAL plcl(klon, nbsrf)
     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
     ! ffonte----Flux thermique utilise pour fondre la neige  
     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
     !           hauteur de neige, en kg / m2 / s  
     REAL run_off_lic_0(klon)  
122    
123      ! Local:      REAL, intent(out):: fqcalving(klon, nbsrf)
124        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
125        ! hauteur de neige, en kg / m2 / s
126    
127      LOGICAL:: firstcal = .true.      real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige
128        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
129    
130        ! Local:
131    
132      ! la nouvelle repartition des surfaces sortie de l'interface      ! la nouvelle repartition des surfaces sortie de l'interface
133      REAL, save:: pctsrf_new_oce(klon)      REAL, save:: pctsrf_new_oce(klon)
134      REAL, save:: pctsrf_new_sic(klon)      REAL, save:: pctsrf_new_sic(klon)
135    
136      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
137      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon), y_run_off_lic(klon)
138        REAL run_off_lic(klon) ! ruissellement total
139      REAL rugmer(klon)      REAL rugmer(klon)
140      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
141      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), ypct(klon), yz0_new(klon)
142        real yrugos(klon) ! longueur de rugosite (en m)
143      REAL yalb(klon)      REAL yalb(klon)
144      REAL snow(klon), yqsurf(klon), yagesno(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
145      real yqsol(klon) ! column-density of water in soil, in kg m-2      real yqsol(klon) ! column-density of water in soil, in kg m-2
# Line 164  contains Line 153  contains
153      REAL y_flux_t(klon), y_flux_q(klon)      REAL y_flux_t(klon), y_flux_q(klon)
154      REAL y_flux_u(klon), y_flux_v(klon)      REAL y_flux_u(klon), y_flux_v(klon)
155      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
156      REAL coefh(klon, 2:klev), coefm(klon, 2:klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
157      real ycdragh(klon), ycdragm(klon)      real ycdragh(klon), ycdragm(klon)
158      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
159      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
160      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
     REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)  
     REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)  
     REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)  
161      REAL yq2(klon, klev + 1)      REAL yq2(klon, klev + 1)
162      REAL delp(klon, klev)      REAL delp(klon, klev)
163      INTEGER i, k, nsrf      INTEGER i, k, nsrf
# Line 192  contains Line 178  contains
178      REAL ycteicl(klon)      REAL ycteicl(klon)
179      REAL ypblt(klon)      REAL ypblt(klon)
180      REAL ytherm(klon)      REAL ytherm(klon)
     REAL ytrmb1(klon)  
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
181      REAL u1(klon), v1(klon)      REAL u1(klon), v1(klon)
182      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
183      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
184    
185      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
186      REAL rugo1(klon)      REAL rugo1(klon)
187        REAL zgeop(klon, klev)
188    
189      !------------------------------------------------------------      !------------------------------------------------------------
190    
# Line 226  contains Line 210  contains
210      ypaprs = 0.      ypaprs = 0.
211      ypplay = 0.      ypplay = 0.
212      ydelp = 0.      ydelp = 0.
     yu = 0.  
     yv = 0.  
     yt = 0.  
     yq = 0.  
     y_dflux_t = 0.  
     y_dflux_q = 0.  
213      yrugoro = 0.      yrugoro = 0.
214      d_ts = 0.      d_ts = 0.
215      flux_t = 0.      flux_t = 0.
# Line 243  contains Line 221  contains
221      d_q = 0.      d_q = 0.
222      d_u = 0.      d_u = 0.
223      d_v = 0.      d_v = 0.
224      ycoefh = 0.      coefh = 0.
225        fqcalving = 0.
226        run_off_lic = 0.
227    
228      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
229      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
230      ! (\`a affiner)      ! (\`a affiner).
231    
232      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
233      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
# Line 262  contains Line 242  contains
242      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
243    
244      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
245         ! Chercher les indices :         ! Define ni and knon:
246          
247         ni = 0         ni = 0
248         knon = 0         knon = 0
249    
250         DO i = 1, klon         DO i = 1, klon
251            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
252            ! "potentielles"            ! "potentielles"
# Line 310  contains Line 292  contains
292               END DO               END DO
293            END DO            END DO
294    
295            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &            ! Calculer les géopotentiels de chaque couche:
296                 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &  
297                 coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
298                   + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
299    
300              DO k = 2, klev
301                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
302                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
303                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
304              ENDDO
305    
306              CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
307                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
308                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
309                   ycdragh(:knon))
310    
311            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
              CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &  
                   ycoefh0(:knon, :))  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
312               ycdragm(:knon) = max(ycdragm(:knon), 0.)               ycdragm(:knon) = max(ycdragm(:knon), 0.)
313               ycdragh(:knon) = max(ycdragh(:knon), 0.)               ycdragh(:knon) = max(ycdragh(:knon), 0.)
314            END IF            end IF
315    
316            ! on met un seuil pour ycdragm et ycdragh            ! on met un seuil pour ycdragm et ycdragh
317            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
# Line 329  contains Line 319  contains
319               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
320            END IF            END IF
321    
322            IF (ok_kzmin) THEN            IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf)
323               ! Calcul d'une diffusion minimale pour les conditions tres stables            call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
324               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
325                    ycdragm(:knon), ycoefh0(:knon, :))                 yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
326               ycoefm0(:knon, :) = ycoefh0(:knon, :)                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
327               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))            
328               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
           END IF  
   
           IF (iflag_pbl >= 6) THEN  
              ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et  
              ! Fr\'ed\'eric Hourdin  
              yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &  
                   + ypplay(:knon, 1))) &  
                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg  
   
              DO k = 2, klev  
                 yzlay(:knon, k) = yzlay(:knon, k-1) &  
                      + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                      / ypaprs(1:knon, k) &  
                      * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
              END DO  
   
              DO k = 1, klev  
                 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &  
                      / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))  
              END DO  
   
              zlev(:knon, 1) = 0.  
              zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &  
                   - yzlay(:knon, klev - 1)  
   
              DO k = 2, klev  
                 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))  
              END DO  
   
              DO k = 1, klev + 1  
                 DO j = 1, knon  
                    i = ni(j)  
                    yq2(j, k) = q2(i, k, nsrf)  
                 END DO  
              END DO  
   
              ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))  
              CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &  
                   yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &  
                   ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))  
              coefm(:knon, :) = ykmm(:knon, 2:klev)  
              coefh(:knon, :) = ykmn(:knon, 2:klev)  
           END IF  
   
           CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &  
329                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
330                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
331                 y_flux_u(:knon))                 y_flux_u(:knon))
332            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
333                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
334                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
335                 y_flux_v(:knon))                 y_flux_v(:knon))
336    
337            ! calculer la diffusion de "q" et de "h"            CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), &
338            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &                 mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), &
339                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &                 yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), &
340                 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &                 yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), &
341                 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &                 ydelp(:knon, :), yrads(:knon), yalb(:knon), snow(:knon), &
342                 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &                 yqsurf(:knon), yrain_f(:knon), ysnow_f(:knon), yfluxlat(:knon), &
343                 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &                 pctsrf_new_sic(ni(:knon)), yagesno(:knon), y_d_t(:knon, :), &
344                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &                 y_d_q(:knon, :), y_d_ts(:knon), yz0_new(:knon), &
345                 y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &                 y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), &
346                 y_run_off_lic_0)                 y_dflux_q(:knon), y_fqcalving(:knon), y_ffonte(:knon), &
347                   y_run_off_lic_0(:knon), y_run_off_lic(:knon))
348    
349            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
350    
351            yrugm = 0.            yrugm = 0.
352    
353            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
354               DO j = 1, knon               DO j = 1, knon
355                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
# Line 410  contains Line 358  contains
358                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
359               END DO               END DO
360            END IF            END IF
           DO j = 1, knon  
              y_dflux_t(j) = y_dflux_t(j) * ypct(j)  
              y_dflux_q(j) = y_dflux_q(j) * ypct(j)  
           END DO  
361    
362            DO k = 1, klev            DO k = 1, klev
363               DO j = 1, knon               DO j = 1, knon
# Line 453  contains Line 397  contains
397               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
398               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
399               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
400               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypct(j)
401               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypct(j)
402            END DO            END DO
403            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
404               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 462  contains Line 406  contains
406               DO j = 1, knon               DO j = 1, knon
407                  i = ni(j)                  i = ni(j)
408                  run_off_lic_0(i) = y_run_off_lic_0(j)                  run_off_lic_0(i) = y_run_off_lic_0(j)
409                    run_off_lic(i) = y_run_off_lic(j)
410               END DO               END DO
411            END IF            END IF
412    
# Line 478  contains Line 423  contains
423               END DO               END DO
424            END DO            END DO
425    
426            forall (k = 2:klev) ycoefh(ni(:knon), k) &            forall (k = 2:klev) coefh(ni(:knon), k) &
427                 = ycoefh(ni(:knon), k) + coefh(:knon, k) * ypct(:knon)                 = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
428    
429            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
430    
# Line 502  contains Line 447  contains
447               qairsol(j) = yqsurf(j)               qairsol(j) = yqsurf(j)
448            END DO            END DO
449    
450            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
451                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, &
452                 yq2m, yt10m, yq10m, wind10m(:knon), ustar)                 yq10m, wind10m(:knon), ustar(:knon))
453    
454            DO j = 1, knon            DO j = 1, knon
455               i = ni(j)               i = ni(j)
# Line 518  contains Line 463  contains
463            END DO            END DO
464    
465            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
466                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
467                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
468                   ytherm, ylcl)
469    
470            DO j = 1, knon            DO j = 1, knon
471               i = ni(j)               i = ni(j)
# Line 530  contains Line 476  contains
476               cteicl(i, nsrf) = ycteicl(j)               cteicl(i, nsrf) = ycteicl(j)
477               pblt(i, nsrf) = ypblt(j)               pblt(i, nsrf) = ypblt(j)
478               therm(i, nsrf) = ytherm(j)               therm(i, nsrf) = ytherm(j)
              trmb1(i, nsrf) = ytrmb1(j)  
              trmb2(i, nsrf) = ytrmb2(j)  
              trmb3(i, nsrf) = ytrmb3(j)  
479            END DO            END DO
480    
481            DO j = 1, knon            IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :)
              DO k = 1, klev + 1  
                 i = ni(j)  
                 q2(i, k, nsrf) = yq2(j, k)  
              END DO  
           END DO  
482         else         else
483            fsnow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
484         end IF if_knon         end IF if_knon
# Line 551  contains Line 489  contains
489      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
490      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
491    
492      firstcal = .false.      CALL histwrite_phy("run_off_lic", run_off_lic)
493    
494    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
495    
496  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.243  
changed lines
  Added in v.303

  ViewVC Help
Powered by ViewVC 1.1.21