/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f90
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/Sources/phylmd/clmain.f revision 202 by guez, Wed Jun 8 12:23:41 2016 UTC trunk/phylmd/Interface_surf/pbl_surface.f90 revision 328 by guez, Thu Jun 13 14:40:06 2019 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ts, cdmmax, &    SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, &         cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, falbe, fluxlat, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &         rain_fall, snow_fall, frugs, agesno, rugoro, d_t, d_q, d_u, d_v, &
10         rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &         flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, &
11         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &         coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, &
12         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &         therm, plcl, fqcalving, ffonte, run_off_lic_0, albsol, sollw, solsw, &
13         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)         tsol)
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS)
17        ! Date: Aug. 18th, 1993
18      ! Objet : interface de couche limite (diffusion verticale)      ! Objet : interface de couche limite (diffusion verticale)
19    
20      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
# Line 21  contains Line 22  contains
22      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
23      ! de sol.      ! de sol.
24    
25      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent      use cdrag_m, only: cdrag
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
26      use clqh_m, only: clqh      use clqh_m, only: clqh
27      use clvent_m, only: clvent      use clvent_m, only: clvent
28      use coefkz_m, only: coefkz      use coef_diff_turb_m, only: coef_diff_turb
29      use coefkzmin_m, only: coefkzmin      USE conf_gcm_m, ONLY: lmt_pas
     USE conf_gcm_m, ONLY: prt_level, lmt_pas  
30      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
31      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon
32      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
33      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
34        USE histwrite_phy_m, ONLY: histwrite_phy
35      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
36      USE interfoce_lim_m, ONLY: interfoce_lim      USE interfoce_lim_m, ONLY: interfoce_lim
37        use phyetat0_m, only: masque
38      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
39      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rsigma
40      use time_phylmdz, only: itap      use time_phylmdz, only: itap
     use ustarhb_m, only: ustarhb  
     use vdif_kcay_m, only: vdif_kcay  
     use yamada4_m, only: yamada4  
   
     REAL, INTENT(IN):: dtime ! interval du temps (secondes)  
41    
42      REAL, INTENT(inout):: pctsrf(klon, nbsrf)      REAL, INTENT(inout):: pctsrf(:, :) ! (klon, nbsrf)
43      ! tableau des pourcentages de surface de chaque maille      ! pourcentages de surface de chaque maille
44    
45      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
46      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
47      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
48      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
49      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
50      REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin)  
51        REAL, INTENT(INout):: ftsol(:, :) ! (klon, nbsrf)
52        ! skin temperature of surface fraction, in K
53    
54      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
     REAL, INTENT(IN):: ksta, ksta_ter  
     LOGICAL, INTENT(IN):: ok_kzmin  
55    
56      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
57      ! soil temperature of surface fraction      ! soil temperature of surface fraction
58    
59      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
60      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
61    
62      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
63      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: play(klon, klev) ! pression au milieu de couche (Pa)
64      REAL, INTENT(inout):: snow(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
65      REAL qsurf(klon, nbsrf)      REAL, INTENT(inout):: fqsurf(klon, nbsrf)
     REAL evap(klon, nbsrf)  
66      REAL, intent(inout):: falbe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
67    
68      REAL fluxlat(klon, nbsrf)      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
69        ! flux de chaleur latente, en W m-2
70    
71      REAL, intent(in):: rain_fall(klon)      REAL, intent(in):: rain_fall(klon)
72      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
   
     REAL, intent(in):: snow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
73    
74      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      REAL, intent(in):: snow_fall(klon)
75      REAL, intent(in):: fder(klon)      ! solid water mass flux (kg / m2 / s), positive down
     REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es  
   
     REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)  
76    
77        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
78      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
79      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
80    
81      REAL d_t(klon, klev), d_q(klon, klev)      REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
82      ! d_t------output-R- le changement pour "t"      ! changement pour t et q
     ! d_q------output-R- le changement pour "q"  
83    
84      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
85      ! changement pour "u" et "v"      ! changement pour "u" et "v"
86    
87      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts"      REAL, intent(out):: flux_t(klon, nbsrf)
88        ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
89        ! vers le bas) à la surface
90    
91        REAL, intent(out):: flux_q(klon, nbsrf)
92        ! flux de vapeur d'eau (kg / m2 / s) à la surface
93    
94      REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)      REAL, intent(out):: flux_u(:, :), flux_v(:, :) ! (klon, nbsrf)
95      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)      ! tension du vent (flux turbulent de vent) à la surface, en Pa
     !                    (orientation positive vers le bas)  
     ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   
     REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
     ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
     ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
96    
97      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
98      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
99    
100        ! Ocean slab:
101        REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible
102        REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent
103    
104        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
105        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
106        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
107        ! ce champ sur les quatre sous-surfaces du mod\`ele.
108    
109        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
110    
111      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
112      ! dflux_t derive du flux sensible      ! composantes du vent \`a 10m sans spirale d'Ekman
113      ! dflux_q derive du flux latent  
114      ! IM "slab" ocean      ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
115        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
116      REAL, intent(out):: ycoefh(klon, klev)      ! de sortir les grandeurs par sous-surface.
     REAL, intent(out):: zu1(klon)  
     REAL zv1(klon)  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm  
     ! (Comme les autres diagnostics on cumule dans physiq ce qui  
     ! permet de sortir les grandeurs par sous-surface)  
117      REAL pblh(klon, nbsrf) ! height of planetary boundary layer      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
118      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
119      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
120      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
121      REAL pblt(klon, nbsrf)      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
     ! pblT------- T au nveau HCL  
122      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
     REAL trmb1(klon, nbsrf)  
     ! trmb1-------deep_cape  
     REAL trmb2(klon, nbsrf)  
     ! trmb2--------inhibition  
     REAL trmb3(klon, nbsrf)  
     ! trmb3-------Point Omega  
123      REAL plcl(klon, nbsrf)      REAL plcl(klon, nbsrf)
124      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
125      ! ffonte----Flux thermique utilise pour fondre la neige      REAL, intent(out):: fqcalving(klon, nbsrf)
126      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et necessaire pour limiter la
127      !           hauteur de neige, en kg/m2/s      ! hauteur de neige, en kg / m2 / s
128      REAL run_off_lic_0(klon)  
129        real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige
130        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
131    
132        REAL, intent(out):: albsol(:) ! (klon)
133        ! albedo du sol total, visible, moyen par maille
134    
135        REAL, intent(in):: sollw(:) ! (klon)
136        ! surface net downward longwave flux, in W m-2
137    
138        REAL, intent(in):: solsw(:) ! (klon)
139        ! surface net downward shortwave flux, in W m-2
140    
141        REAL, intent(in):: tsol(:) ! (klon)
142    
143      ! Local:      ! Local:
144    
145      LOGICAL:: firstcal = .true.      REAL d_ts(klon, nbsrf) ! variation of ftsol
146        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
147        REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
148    
149      ! la nouvelle repartition des surfaces sortie de l'interface      ! la nouvelle repartition des surfaces sortie de l'interface
150      REAL, save:: pctsrf_new_oce(klon)      REAL, save:: pctsrf_new_oce(klon)
151      REAL, save:: pctsrf_new_sic(klon)      REAL, save:: pctsrf_new_sic(klon)
152    
153      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
154      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon), y_run_off_lic(klon)
155        REAL run_off_lic(klon) ! ruissellement total
156      REAL rugmer(klon)      REAL rugmer(klon)
   
157      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
158        REAL yts(klon), ypctsrf(klon), yz0_new(klon)
159      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      real yrugos(klon) ! longueur de rugosite (en m)
160      REAL yalb(klon)      REAL yalb(klon)
161      REAL yu1(klon), yv1(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
162      ! on rajoute en output yu1 et yv1 qui sont les vents dans      real yqsol(klon) ! column-density of water in soil, in kg m-2
163      ! la premiere couche      REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down
164      REAL ysnow(klon), yqsurf(klon), yagesno(klon)      REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down
165        REAL yrugm(klon), radsol(klon), yrugoro(klon)
     real yqsol(klon)  
     ! column-density of water in soil, in kg m-2  
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
     REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
166      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
167      REAL y_d_ts(klon)      REAL y_d_ts(klon)
168      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
169      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
170      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
171      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
172      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
173      REAL coefh(klon, klev), coefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
174        real ycdragh(klon), ycdragm(klon)
175      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
176      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
177      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
178        REAL yq2(klon, klev + 1)
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
179      REAL delp(klon, klev)      REAL delp(klon, klev)
180      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
181      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
182    
183      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
184      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
185      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
186    
187      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation      REAL yt2m(klon), yq2m(klon), wind10m(klon)
188        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
189    
190      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
191      REAL ypblh(klon)      REAL ypblh(klon)
# Line 222  contains Line 195  contains
195      REAL ycteicl(klon)      REAL ycteicl(klon)
196      REAL ypblt(klon)      REAL ypblt(klon)
197      REAL ytherm(klon)      REAL ytherm(klon)
198      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
     REAL uzon(klon), vmer(klon)  
199      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
200      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
201        REAL zgeo1(klon)
     REAL qairsol(klon), zgeo1(klon)  
202      REAL rugo1(klon)      REAL rugo1(klon)
203        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
204    
205      !------------------------------------------------------------      !------------------------------------------------------------
206    
207        albsol = sum(falbe * pctsrf, dim = 2)
208    
209        ! R\'epartition sous maille des flux longwave et shortwave
210        ! R\'epartition du longwave par sous-surface lin\'earis\'ee
211    
212        forall (nsrf = 1:nbsrf)
213           fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
214                * (tsol - ftsol(:, nsrf))
215           fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
216        END forall
217    
218      ytherm = 0.      ytherm = 0.
219    
220      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
221         DO i = 1, klon         DO i = 1, klon
222            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
223         END DO         END DO
224      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
225    
226      ! Initialization:      ! Initialization:
227      rugmer = 0.      rugmer = 0.
# Line 258  contains Line 229  contains
229      cdragm = 0.      cdragm = 0.
230      dflux_t = 0.      dflux_t = 0.
231      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
     ypct = 0.  
     yts = 0.  
     ysnow = 0.  
     yqsurf = 0.  
     yrain_f = 0.  
     ysnow_f = 0.  
     yfder = 0.  
232      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
233      ypaprs = 0.      ypaprs = 0.
234      ypplay = 0.      ypplay = 0.
235      ydelp = 0.      ydelp = 0.
     yu = 0.  
     yv = 0.  
     yt = 0.  
     yq = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     y_dflux_t = 0.  
     y_dflux_q = 0.  
     ytsoil = 999999.  
236      yrugoro = 0.      yrugoro = 0.
237      d_ts = 0.      d_ts = 0.
     yfluxlat = 0.  
238      flux_t = 0.      flux_t = 0.
239      flux_q = 0.      flux_q = 0.
240      flux_u = 0.      flux_u = 0.
241      flux_v = 0.      flux_v = 0.
242        fluxlat = 0.
243      d_t = 0.      d_t = 0.
244      d_q = 0.      d_q = 0.
245      d_u = 0.      d_u = 0.
246      d_v = 0.      d_v = 0.
247      ycoefh = 0.      coefh = 0.
248        fqcalving = 0.
249        run_off_lic = 0.
250    
251      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
252      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
253      ! (\`a affiner)      ! (\`a affiner).
254    
255      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
256      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
257      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - masque
258      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - masque
259    
260      ! Tester si c'est le moment de lire le fichier:      ! Tester si c'est le moment de lire le fichier:
261      if (mod(itap - 1, lmt_pas) == 0) then      if (mod(itap - 1, lmt_pas) == 0) then
262         CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)         CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
263      endif      endif
264    
265      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
266    
267      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
268         ! Chercher les indices :         ! Define ni and knon:
269    
270         ni = 0         ni = 0
271         knon = 0         knon = 0
272    
273         DO i = 1, klon         DO i = 1, klon
274            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
275            ! "potentielles"            ! "potentielles"
# Line 326  contains Line 280  contains
280         END DO         END DO
281    
282         if_knon: IF (knon /= 0) then         if_knon: IF (knon /= 0) then
283            DO j = 1, knon            ypctsrf(:knon) = pctsrf(ni(:knon), nsrf)
284               i = ni(j)            yts(:knon) = ftsol(ni(:knon), nsrf)
285               ypct(j) = pctsrf(i, nsrf)            snow(:knon) = fsnow(ni(:knon), nsrf)
286               yts(j) = ts(i, nsrf)            yqsurf(:knon) = fqsurf(ni(:knon), nsrf)
287               ysnow(j) = snow(i, nsrf)            yalb(:knon) = falbe(ni(:knon), nsrf)
288               yqsurf(j) = qsurf(i, nsrf)            yrain_fall(:knon) = rain_fall(ni(:knon))
289               yalb(j) = falbe(i, nsrf)            ysnow_fall(:knon) = snow_fall(ni(:knon))
290               yrain_f(j) = rain_fall(i)            yagesno(:knon) = agesno(ni(:knon), nsrf)
291               ysnow_f(j) = snow_f(i)            yrugos(:knon) = frugs(ni(:knon), nsrf)
292               yagesno(j) = agesno(i, nsrf)            yrugoro(:knon) = rugoro(ni(:knon))
293               yfder(j) = fder(i)            radsol(:knon) = fsolsw(ni(:knon), nsrf) + fsollw(ni(:knon), nsrf)
294               yrugos(j) = rugos(i, nsrf)            ypaprs(:knon, klev + 1) = paprs(ni(:knon), klev + 1)
295               yrugoro(j) = rugoro(i)            y_run_off_lic_0(:knon) = run_off_lic_0(ni(:knon))
              yu1(j) = u1lay(i)  
              yv1(j) = v1lay(i)  
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
              y_run_off_lic_0(j) = run_off_lic_0(i)  
           END DO  
296    
297            ! For continent, copy soil water content            ! For continent, copy soil water content
298            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
299    
300            DO k = 1, nsoilmx            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
              DO j = 1, knon  
                 i = ni(j)  
                 ytsoil(j, k) = ftsoil(i, k, nsrf)  
              END DO  
           END DO  
301    
302            DO k = 1, klev            DO k = 1, klev
303               DO j = 1, knon               DO j = 1, knon
304                  i = ni(j)                  i = ni(j)
305                  ypaprs(j, k) = paprs(i, k)                  ypaprs(j, k) = paprs(i, k)
306                  ypplay(j, k) = pplay(i, k)                  ypplay(j, k) = play(i, k)
307                  ydelp(j, k) = delp(i, k)                  ydelp(j, k) = delp(i, k)
308                  yu(j, k) = u(i, k)                  yu(j, k) = u(i, k)
309                  yv(j, k) = v(i, k)                  yv(j, k) = v(i, k)
# Line 373  contains Line 312  contains
312               END DO               END DO
313            END DO            END DO
314    
315            ! calculer Cdrag et les coefficients d'echange            ! Calculer les géopotentiels de chaque couche:
           CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &  
                yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))  
           IF (iflag_pbl == 1) THEN  
              CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
           END IF  
   
           ! on met un seuil pour coefm et coefh  
           IF (nsrf == is_oce) THEN  
              coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)  
              coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)  
           END IF  
   
           IF (ok_kzmin) THEN  
              ! Calcul d'une diffusion minimale pour les conditions tres stables  
              CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &  
                   coefm(:knon, 1), ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
           END IF  
   
           IF (iflag_pbl >= 3) THEN  
              ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et  
              ! Fr\'ed\'eric Hourdin  
              yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &  
                   + ypplay(:knon, 1))) &  
                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg  
              DO k = 2, klev  
                 yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                      + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                      / ypaprs(1:knon, k) &  
                      * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
              END DO  
              DO k = 1, klev  
                 yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                      / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
              END DO  
              yzlev(1:knon, 1) = 0.  
              yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &  
                   - yzlay(:knon, klev - 1)  
              DO k = 2, klev  
                 yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
              END DO  
              DO k = 1, klev + 1  
                 DO j = 1, knon  
                    i = ni(j)  
                    yq2(j, k) = q2(i, k, nsrf)  
                 END DO  
              END DO  
316    
317               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
318               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
319    
320               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange            DO k = 2, klev
321                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
322                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
323                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
324              ENDDO
325    
326              CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
327                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
328                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
329                   ycdragh(:knon))
330    
331               IF (iflag_pbl >= 11) THEN            IF (iflag_pbl == 1) THEN
332                  CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &               ycdragm(:knon) = max(ycdragm(:knon), 0.)
333                       yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &               ycdragh(:knon) = max(ycdragh(:knon), 0.)
334                       iflag_pbl)            end IF
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
335    
336               coefm(:knon, 2:) = ykmm(:knon, 2:klev)            ! on met un seuil pour ycdragm et ycdragh
337               coefh(:knon, 2:) = ykmn(:knon, 2:klev)            IF (nsrf == is_oce) THEN
338                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
339                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
340            END IF            END IF
341    
342            ! calculer la diffusion des vitesses "u" et "v"            IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf)
343            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &            call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
344                 ypplay, ydelp, y_d_u, y_flux_u)                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
345            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &                 yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
346                 ypplay, ydelp, y_d_v, y_flux_v)                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
347    
348            ! calculer la diffusion de "q" et de "h"            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
349            CALL clqh(dtime, jour, firstcal, rlat, knon, nsrf, ni(:knon), &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
350                 ytsoil, yqsol, rmu0, yrugos, yrugoro, yu1, yv1, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
351                 coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, yrads, &                 y_flux_u(:knon))
352                 yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, &            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
353                 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
354                 yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
355                 y_fqcalving, y_ffonte, y_run_off_lic_0)                 y_flux_v(:knon))
356    
357              CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), &
358                   mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), &
359                   yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), &
360                   yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), &
361                   ydelp(:knon, :), radsol(:knon), yalb(:knon), snow(:knon), &
362                   yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), &
363                   yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), &
364                   y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), &
365                   yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), &
366                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), &
367                   y_ffonte(:knon), y_run_off_lic_0(:knon), y_run_off_lic(:knon))
368    
369            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
370    
371            yrugm = 0.            yrugm = 0.
372    
373            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
374               DO j = 1, knon               DO j = 1, knon
375                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
376                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
377                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
378                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
379               END DO               END DO
380            END IF            END IF
           DO j = 1, knon  
              y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
              y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
           END DO  
381    
382            DO k = 1, klev            DO k = 1, klev
383               DO j = 1, knon               DO j = 1, knon
384                  i = ni(j)                  i = ni(j)
385                  coefh(j, k) = coefh(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypctsrf(j)
386                  coefm(j, k) = coefm(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypctsrf(j)
387                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypctsrf(j)
388                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypctsrf(j)
                 flux_t(i, k, nsrf) = y_flux_t(j, k)  
                 flux_q(i, k, nsrf) = y_flux_q(j, k)  
                 flux_u(i, k, nsrf) = y_flux_u(j, k)  
                 flux_v(i, k, nsrf) = y_flux_v(j, k)  
                 y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
                 y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
389               END DO               END DO
390            END DO            END DO
391    
392            evap(:, nsrf) = -flux_q(:, 1, nsrf)            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
393              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
394              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
395              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
396    
397            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
398            snow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
399            qsurf(:, nsrf) = 0.            fqsurf(:, nsrf) = 0.
400            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
           fluxlat(:, nsrf) = 0.  
401            DO j = 1, knon            DO j = 1, knon
402               i = ni(j)               i = ni(j)
403               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
404               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
405               snow(i, nsrf) = ysnow(j)               fsnow(i, nsrf) = snow(j)
406               qsurf(i, nsrf) = yqsurf(j)               fqsurf(i, nsrf) = yqsurf(j)
407               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
408               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
409               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
410                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
411                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
412               END IF               END IF
413               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
414               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
415               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
416               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j) * ypctsrf(j)
417               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j) * ypctsrf(j)
418               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypctsrf(j)
419               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypctsrf(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
420            END DO            END DO
421            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
422               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 525  contains Line 424  contains
424               DO j = 1, knon               DO j = 1, knon
425                  i = ni(j)                  i = ni(j)
426                  run_off_lic_0(i) = y_run_off_lic_0(j)                  run_off_lic_0(i) = y_run_off_lic_0(j)
427                    run_off_lic(i) = y_run_off_lic(j)
428               END DO               END DO
429            END IF            END IF
430    
431            ftsoil(:, :, nsrf) = 0.            ftsoil(:, :, nsrf) = 0.
432            DO k = 1, nsoilmx            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
              DO j = 1, knon  
                 i = ni(j)  
                 ftsoil(i, k, nsrf) = ytsoil(j, k)  
              END DO  
           END DO  
433    
434            DO j = 1, knon            DO j = 1, knon
435               i = ni(j)               i = ni(j)
# Line 543  contains Line 438  contains
438                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
439                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
440                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
                 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)  
441               END DO               END DO
442            END DO            END DO
443    
444              forall (k = 2:klev) coefh(ni(:knon), k) &
445                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypctsrf(:knon)
446    
447            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
448    
449            DO j = 1, knon            DO j = 1, knon
450               i = ni(j)               i = ni(j)
451               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
452               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
453               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
454               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
455               zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
456                    1)))*(ypaprs(j, 1)-ypplay(j, 1))                    1))) * (ypaprs(j, 1)-ypplay(j, 1))
457               tairsol(j) = yts(j) + y_d_ts(j)               tairsol(j) = yts(j) + y_d_ts(j)
458               rugo1(j) = yrugos(j)               rugo1(j) = yrugos(j)
459               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
460                  rugo1(j) = rugos(i, nsrf)                  rugo1(j) = frugs(i, nsrf)
461               END IF               END IF
462               psfce(j) = ypaprs(j, 1)               psfce(j) = ypaprs(j, 1)
463               patm(j) = ypplay(j, 1)               patm(j) = ypplay(j, 1)
   
              qairsol(j) = yqsurf(j)  
464            END DO            END DO
465    
466            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
467                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 zgeo1, tairsol, yqsurf(:knon), rugo1, psfce, patm, yt2m, yq2m, &
468                 yt10m, yq10m, yu10m, yustar)                 yt10m, yq10m, wind10m(:knon), ustar(:knon))
469    
470            DO j = 1, knon            DO j = 1, knon
471               i = ni(j)               i = ni(j)
472               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
473               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
474    
475               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
476               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
477               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
478                      / sqrt(u1(j)**2 + v1(j)**2)
479            END DO            END DO
480    
481            CALL hbtm(knon, ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t, &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
482                 y_flux_q, yu, yv, yt, yq, ypblh(:knon), ycapcl, yoliqcl, &                 y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
483                 ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
484                   ytherm, ylcl)
485    
486            DO j = 1, knon            DO j = 1, knon
487               i = ni(j)               i = ni(j)
# Line 596  contains Line 492  contains
492               cteicl(i, nsrf) = ycteicl(j)               cteicl(i, nsrf) = ycteicl(j)
493               pblt(i, nsrf) = ypblt(j)               pblt(i, nsrf) = ypblt(j)
494               therm(i, nsrf) = ytherm(j)               therm(i, nsrf) = ytherm(j)
              trmb1(i, nsrf) = ytrmb1(j)  
              trmb2(i, nsrf) = ytrmb2(j)  
              trmb3(i, nsrf) = ytrmb3(j)  
495            END DO            END DO
496    
497            DO j = 1, knon            IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :)
498               DO k = 1, klev + 1         else
499                  i = ni(j)            fsnow(:, nsrf) = 0.
                 q2(i, k, nsrf) = yq2(j, k)  
              END DO  
           END DO  
500         end IF if_knon         end IF if_knon
501      END DO loop_surface      END DO loop_surface
502    
503      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
504      rugos(:, is_oce) = rugmer      frugs(:, is_oce) = rugmer
505      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
506      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
507    
508      firstcal = .false.      CALL histwrite_phy("run_off_lic", run_off_lic)
509        ftsol = ftsol + d_ts ! update surface temperature
510        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
511        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
512        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
513        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
514    
515    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
516    
517  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.202  
changed lines
  Added in v.328

  ViewVC Help
Powered by ViewVC 1.1.21