/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f90
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 40 by guez, Tue Feb 22 13:49:36 2011 UTC trunk/phylmd/Interface_surf/pbl_surface.f revision 300 by guez, Thu Aug 2 15:55:01 2018 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&    SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, &
9         soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&         rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&         oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
13         d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
14         dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15         capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&      ! Author: Z. X. Li (LMD/CNRS), date: 1993 Aug. 18th
16         fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)      ! Objet : interface de couche limite (diffusion verticale)
17    
18      ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
19      ! Author: Z.X. Li (LMD/CNRS), date: 1993/08/18      ! de la couche limite pour les traceurs se fait avec "cltrac" et
20      ! Objet : interface de "couche limite" (diffusion verticale)      ! ne tient pas compte de la diff\'erentiation des sous-fractions
21        ! de sol.
22      ! Tout ce qui a trait aux traceurs est dans "phytrac" maintenant.  
23      ! Pour l'instant le calcul de la couche limite pour les traceurs      use cdrag_m, only: cdrag
24      ! se fait avec "cltrac" et ne tient pas compte de la différentiation      use clqh_m, only: clqh
25      ! des sous-fractions de sol.      use clvent_m, only: clvent
26        use coef_diff_turb_m, only: coef_diff_turb
27      ! Pour pouvoir extraire les coefficients d'échanges et le vent      USE conf_gcm_m, ONLY: lmt_pas
28      ! dans la première couche, trois champs supplémentaires ont été      USE conf_phys_m, ONLY: iflag_pbl
29      ! créés : "zcoefh", "zu1" et "zv1". Pour l'instant nous avons      USE dimphy, ONLY: klev, klon
30      ! moyenné les valeurs de ces trois champs sur les 4 sous-surfaces      USE dimsoil, ONLY: nsoilmx
31      ! du modèle. Dans l'avenir, si les informations des sous-surfaces      use hbtm_m, only: hbtm
32      ! doivent être prises en compte, il faudra sortir ces mêmes champs      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
33      ! en leur ajoutant une dimension, c'est-à-dire "nbsrf" (nombre de      USE interfoce_lim_m, ONLY: interfoce_lim
34      ! sous-surfaces).      use phyetat0_m, only: zmasq
35        use stdlevvar_m, only: stdlevvar
36      ! Arguments:      USE suphec_m, ONLY: rd, rg
37      ! dtime----input-R- interval du temps (secondes)      use time_phylmdz, only: itap
38      ! itap-----input-I- numero du pas de temps  
39      ! date0----input-R- jour initial      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
40      ! t--------input-R- temperature (K)      ! tableau des pourcentages de surface de chaque maille
41      ! q--------input-R- vapeur d'eau (kg/kg)  
42      ! u--------input-R- vitesse u      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
43      ! v--------input-R- vitesse v      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
44      ! ts-------input-R- temperature du sol (en Kelvin)      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
45      ! paprs----input-R- pression a intercouche (Pa)      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
46      ! pplay----input-R- pression au milieu de couche (Pa)      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
47      ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
48      ! rlat-----input-R- latitude en degree      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
49      ! rugos----input-R- longeur de rugosite (en m)  
50      ! cufi-----input-R- resolution des mailles en x (m)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
51      ! cvfi-----input-R- resolution des mailles en y (m)      ! soil temperature of surface fraction
52    
53      ! d_t------output-R- le changement pour "t"      REAL, INTENT(inout):: qsol(:) ! (klon)
54      ! d_q------output-R- le changement pour "q"      ! column-density of water in soil, in kg m-2
55      ! d_u------output-R- le changement pour "u"  
56      ! d_v------output-R- le changement pour "v"      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
57      ! d_ts-----output-R- le changement pour "ts"      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
58      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
59      !                    (orientation positive vers le bas)      REAL qsurf(klon, nbsrf)
60      ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)      REAL evap(klon, nbsrf)
61      ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal      REAL, intent(inout):: falbe(klon, nbsrf)
62      ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
     ! dflux_t derive du flux sensible  
     ! dflux_q derive du flux latent  
     !IM "slab" ocean  
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
63    
64      ! tslab-in/output-R temperature du slab ocean (en Kelvin)      REAL, intent(in):: rain_fall(klon)
65      ! uniqmnt pour slab      ! liquid water mass flux (kg / m2 / s), positive down
66    
67      ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')      REAL, intent(in):: snow_f(klon)
68      !cc      ! solid water mass flux (kg / m2 / s), positive down
     ! ffonte----Flux thermique utilise pour fondre la neige  
     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
     !           hauteur de neige, en kg/m2/s  
     ! on rajoute en output yu1 et yv1 qui sont les vents dans  
     ! la premiere couche  
     ! ces 4 variables sont maintenant traites dans phytrac  
     ! itr--------input-I- nombre de traceurs  
     ! tr---------input-R- q. de traceurs  
     ! flux_surf--input-R- flux de traceurs a la surface  
     ! d_tr-------output-R tendance de traceurs  
     !IM cf. AM : PBL  
     ! trmb1-------deep_cape  
     ! trmb2--------inhibition  
     ! trmb3-------Point Omega  
     ! Cape(klon)-------Cape du thermique  
     ! EauLiq(klon)-------Eau liqu integr du thermique  
     ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
     ! lcl------- Niveau de condensation  
     ! pblh------- HCL  
     ! pblT------- T au nveau HCL  
   
     USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
     use histwrite_m, only: histwrite  
     use calendar, ONLY : ymds2ju  
     USE dimens_m, ONLY : iim, jjm  
     USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
     USE dimphy, ONLY : klev, klon, zmasq  
     USE dimsoil, ONLY : nsoilmx  
     USE temps, ONLY : annee_ref, itau_phy  
     USE dynetat0_m, ONLY : day_ini  
     USE iniprint, ONLY : prt_level  
     USE suphec_m, ONLY : rd, rg, rkappa  
     USE conf_phys_m, ONLY : iflag_pbl  
     USE gath_cpl, ONLY : gath2cpl  
     use hbtm_m, only: hbtm  
69    
70      REAL, INTENT (IN) :: dtime      REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
71      REAL date0      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
72      INTEGER, INTENT (IN) :: itap      real agesno(klon, nbsrf)
73      REAL t(klon, klev), q(klon, klev)      REAL, INTENT(IN):: rugoro(klon)
     REAL u(klon, klev), v(klon, klev)  
     REAL, INTENT (IN) :: paprs(klon, klev+1)  
     REAL, INTENT (IN) :: pplay(klon, klev)  
     REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
     REAL cufi(klon), cvfi(klon)  
     REAL d_t(klon, klev), d_q(klon, klev)  
     REAL d_u(klon, klev), d_v(klon, klev)  
     REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
     REAL dflux_t(klon), dflux_q(klon)  
     !IM "slab" ocean  
     REAL flux_o(klon), flux_g(klon)  
     REAL y_flux_o(klon), y_flux_g(klon)  
     REAL tslab(klon), ytslab(klon)  
     REAL seaice(klon), y_seaice(klon)  
     REAL y_fqcalving(klon), y_ffonte(klon)  
     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
     REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
74    
75      REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)      REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
76      REAL rugmer(klon), agesno(klon, nbsrf)      ! changement pour t et q
     REAL, INTENT (IN) :: rugoro(klon)  
     REAL cdragh(klon), cdragm(klon)  
     ! jour de l'annee en cours                  
     INTEGER jour  
     REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
     ! taux CO2 atmosphere                      
     REAL co2_ppm  
     LOGICAL, INTENT (IN) :: debut  
     LOGICAL, INTENT (IN) :: lafin  
     LOGICAL ok_veget  
     CHARACTER (len=*), INTENT (IN) :: ocean  
     INTEGER npas, nexca  
   
     REAL pctsrf(klon, nbsrf)  
     REAL ts(klon, nbsrf)  
     REAL d_ts(klon, nbsrf)  
     REAL snow(klon, nbsrf)  
     REAL qsurf(klon, nbsrf)  
     REAL evap(klon, nbsrf)  
     REAL albe(klon, nbsrf)  
     REAL alblw(klon, nbsrf)  
77    
78      REAL fluxlat(klon, nbsrf)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
79        ! changement pour "u" et "v"
80    
81      REAL rain_f(klon), snow_f(klon)      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
     REAL fder(klon)  
82    
83      REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)      REAL, intent(out):: flux_t(klon, nbsrf)
84      REAL rugos(klon, nbsrf)      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
85      ! la nouvelle repartition des surfaces sortie de l'interface      ! le bas) à la surface
     REAL pctsrf_new(klon, nbsrf)  
86    
87      REAL zcoefh(klon, klev)      REAL, intent(out):: flux_q(klon, nbsrf)
88      REAL zu1(klon)      ! flux de vapeur d'eau (kg / m2 / s) à la surface
     REAL zv1(klon)  
89    
90      !$$$ PB ajout pour soil      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
91      LOGICAL, INTENT (IN) :: soil_model      ! tension du vent (flux turbulent de vent) à la surface, en Pa
     !IM ajout seuils cdrm, cdrh  
     REAL cdmmax, cdhmax  
92    
93      REAL ksta, ksta_ter      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
94      LOGICAL ok_kzmin      real q2(klon, klev + 1, nbsrf)
95    
96      REAL ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
97      REAL ytsoil(klon, nsoilmx)      ! dflux_t derive du flux sensible
98      REAL qsol(klon)      ! dflux_q derive du flux latent
99        ! IM "slab" ocean
100    
101      EXTERNAL clqh, clvent, coefkz, calbeta, cltrac      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
102        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
103        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
104        ! ce champ sur les quatre sous-surfaces du mod\`ele.
105    
106        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
107    
108        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
109        ! composantes du vent \`a 10m sans spirale d'Ekman
110    
111        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
112        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
113        ! de sortir les grandeurs par sous-surface.
114        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
115        REAL capcl(klon, nbsrf)
116        REAL oliqcl(klon, nbsrf)
117        REAL cteicl(klon, nbsrf)
118        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
119        REAL therm(klon, nbsrf)
120        REAL plcl(klon, nbsrf)
121    
122        REAL, intent(out):: fqcalving(klon, nbsrf)
123        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
124        ! hauteur de neige, en kg / m2 / s
125    
126        real ffonte(klon, nbsrf)
127        ! ffonte----Flux thermique utilise pour fondre la neige
128        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
129    
130        ! Local:
131    
132      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      LOGICAL:: firstcal = .true.
133    
134        ! la nouvelle repartition des surfaces sortie de l'interface
135        REAL, save:: pctsrf_new_oce(klon)
136        REAL, save:: pctsrf_new_sic(klon)
137    
138        REAL y_fqcalving(klon), y_ffonte(klon)
139        real y_run_off_lic_0(klon)
140        REAL rugmer(klon)
141        REAL ytsoil(klon, nsoilmx)
142        REAL yts(klon), ypct(klon), yz0_new(klon)
143        real yrugos(klon) ! longueur de rugosite (en m)
144      REAL yalb(klon)      REAL yalb(klon)
145      REAL yalblw(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
146      REAL yu1(klon), yv1(klon)      real yqsol(klon) ! column-density of water in soil, in kg m-2
147      REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
148      REAL yrain_f(klon), ysnow_f(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
     REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
     REAL yfder(klon), ytaux(klon), ytauy(klon)  
149      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
150      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
151      REAL y_d_ts(klon)      REAL y_d_ts(klon)
152      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
153      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
154      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
155      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
156      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
157      REAL ycoefh(klon, klev), ycoefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
158        real ycdragh(klon), ycdragm(klon)
159      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
160      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
161      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
162        REAL yq2(klon, klev + 1)
     LOGICAL ok_nonloc  
     PARAMETER (ok_nonloc=.FALSE.)  
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     !IM 081204 hcl_Anne ? BEG  
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
     REAL q2diag(klon, klev+1)  
     !IM 081204 hcl_Anne ? END  
   
     REAL u1lay(klon), v1lay(klon)  
163      REAL delp(klon, klev)      REAL delp(klon, klev)
164      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
165      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
166    
167      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
168      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
169      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
170    
171      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL yt2m(klon), yq2m(klon), wind10m(klon)
172        REAL ustar(klon)
     ! maf pour sorties IOISPL en cas de debugagage  
   
     CHARACTER (80) cldebug  
     SAVE cldebug  
     CHARACTER (8) cl_surf(nbsrf)  
     SAVE cl_surf  
     INTEGER nhoridbg, nidbg  
     SAVE nhoridbg, nidbg  
     INTEGER ndexbg(iim*(jjm+1))  
     REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
     REAL tabindx(klon)  
     REAL debugtab(iim, jjm+1)  
     LOGICAL first_appel  
     SAVE first_appel  
     DATA first_appel/ .TRUE./  
     LOGICAL :: debugindex = .FALSE.  
     INTEGER idayref  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
173    
174      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
     !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
     ! physiq ce qui permet de sortir les grdeurs par sous surface)  
     REAL pblh(klon, nbsrf)  
     REAL plcl(klon, nbsrf)  
     REAL capcl(klon, nbsrf)  
     REAL oliqcl(klon, nbsrf)  
     REAL cteicl(klon, nbsrf)  
     REAL pblt(klon, nbsrf)  
     REAL therm(klon, nbsrf)  
     REAL trmb1(klon, nbsrf)  
     REAL trmb2(klon, nbsrf)  
     REAL trmb3(klon, nbsrf)  
175      REAL ypblh(klon)      REAL ypblh(klon)
176      REAL ylcl(klon)      REAL ylcl(klon)
177      REAL ycapcl(klon)      REAL ycapcl(klon)
# Line 276  contains Line 179  contains
179      REAL ycteicl(klon)      REAL ycteicl(klon)
180      REAL ypblt(klon)      REAL ypblt(klon)
181      REAL ytherm(klon)      REAL ytherm(klon)
182      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
     REAL y_cd_h(klon), y_cd_m(klon)  
     REAL uzon(klon), vmer(klon)  
183      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
184      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
185    
186      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
187      REAL rugo1(klon)      REAL rugo1(klon)
188        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
     REAL zt, zqs, zdelta, zcor  
     REAL t_coup  
     PARAMETER (t_coup=273.15)  
   
     CHARACTER (len=20) :: modname = 'clmain'  
189    
190      !------------------------------------------------------------      !------------------------------------------------------------
191    
192      ytherm = 0.      ytherm = 0.
193    
     IF (debugindex .AND. first_appel) THEN  
        first_appel = .FALSE.  
   
        ! initialisation sorties netcdf  
   
        idayref = day_ini  
        CALL ymds2ju(annee_ref, 1, idayref, 0., zjulian)  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
        DO i = 1, iim  
           zx_lon(i, 1) = rlon(i+1)  
           zx_lon(i, jjm+1) = rlon(i+1)  
        END DO  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
        cldebug = 'sous_index'  
        CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
             iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
        ! no vertical axis  
        cl_surf(1) = 'ter'  
        cl_surf(2) = 'lic'  
        cl_surf(3) = 'oce'  
        cl_surf(4) = 'sic'  
        DO nsrf = 1, nbsrf  
           CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
                nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
        END DO  
        CALL histend(nidbg)  
        CALL histsync(nidbg)  
     END IF  
   
194      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
195         DO i = 1, klon         DO i = 1, klon
196            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
197         END DO         END DO
198      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
199    
200      ! Initialization:      ! Initialization:
201      rugmer = 0.      rugmer = 0.
# Line 348  contains Line 203  contains
203      cdragm = 0.      cdragm = 0.
204      dflux_t = 0.      dflux_t = 0.
205      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
206      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
207      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
208      yrain_f = 0.      yrain_f = 0.
209      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
     ytaux = 0.  
     ytauy = 0.  
     ysolsw = 0.  
     ysollw = 0.  
     ysollwdown = 0.  
210      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
211      ypaprs = 0.      ypaprs = 0.
212      ypplay = 0.      ypplay = 0.
213      ydelp = 0.      ydelp = 0.
     yu = 0.  
     yv = 0.  
     yt = 0.  
     yq = 0.  
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     !$$ PB  
     y_dflux_t = 0.  
     y_dflux_q = 0.  
     ytsoil = 999999.  
214      yrugoro = 0.      yrugoro = 0.
     ! -- LOOP  
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
     ! -- LOOP  
215      d_ts = 0.      d_ts = 0.
     !§§§ PB  
     yfluxlat = 0.  
216      flux_t = 0.      flux_t = 0.
217      flux_q = 0.      flux_q = 0.
218      flux_u = 0.      flux_u = 0.
219      flux_v = 0.      flux_v = 0.
220        fluxlat = 0.
221      d_t = 0.      d_t = 0.
222      d_q = 0.      d_q = 0.
223      d_u = 0.      d_u = 0.
224      d_v = 0.      d_v = 0.
225      zcoefh = 0.      coefh = 0.
226        fqcalving = 0.
227    
228      ! Boucler sur toutes les sous-fractions du sol:      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
229        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
230      ! Initialisation des "pourcentages potentiels". On considère ici qu'on      ! (\`a affiner)
     ! peut avoir potentiellement de la glace sur tout le domaine océanique  
     ! (à affiner)  
231    
232      pctsrf_pot = pctsrf      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
233        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
234      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
235      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
236    
237      DO nsrf = 1, nbsrf      ! Tester si c'est le moment de lire le fichier:
238         ! chercher les indices:      if (mod(itap - 1, lmt_pas) == 0) then
239           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
240        endif
241    
242        ! Boucler sur toutes les sous-fractions du sol:
243    
244        loop_surface: DO nsrf = 1, nbsrf
245           ! Chercher les indices :
246         ni = 0         ni = 0
247         knon = 0         knon = 0
248         DO i = 1, klon         DO i = 1, klon
249            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
250            ! "potentielles"            ! "potentielles"
251            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
252               knon = knon + 1               knon = knon + 1
# Line 424  contains Line 254  contains
254            END IF            END IF
255         END DO         END DO
256    
257         ! variables pour avoir une sortie IOIPSL des INDEX         if_knon: IF (knon /= 0) then
        IF (debugindex) THEN  
           tabindx = 0.  
           DO i = 1, knon  
              tabindx(i) = real(i)  
           END DO  
           debugtab = 0.  
           ndexbg = 0  
           CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
           CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
        END IF  
   
        IF (knon==0) CYCLE  
   
        DO j = 1, knon  
           i = ni(j)  
           ypct(j) = pctsrf(i, nsrf)  
           yts(j) = ts(i, nsrf)  
           ytslab(i) = tslab(i)  
           ysnow(j) = snow(i, nsrf)  
           yqsurf(j) = qsurf(i, nsrf)  
           yalb(j) = albe(i, nsrf)  
           yalblw(j) = alblw(i, nsrf)  
           yrain_f(j) = rain_f(i)  
           ysnow_f(j) = snow_f(i)  
           yagesno(j) = agesno(i, nsrf)  
           yfder(j) = fder(i)  
           ytaux(j) = flux_u(i, 1, nsrf)  
           ytauy(j) = flux_v(i, 1, nsrf)  
           ysolsw(j) = solsw(i, nsrf)  
           ysollw(j) = sollw(i, nsrf)  
           ysollwdown(j) = sollwdown(i)  
           yrugos(j) = rugos(i, nsrf)  
           yrugoro(j) = rugoro(i)  
           yu1(j) = u1lay(i)  
           yv1(j) = v1lay(i)  
           yrads(j) = ysolsw(j) + ysollw(j)  
           ypaprs(j, klev+1) = paprs(i, klev+1)  
           y_run_off_lic_0(j) = run_off_lic_0(i)  
           yu10mx(j) = u10m(i, nsrf)  
           yu10my(j) = v10m(i, nsrf)  
           ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
        END DO  
   
        !     IF bucket model for continent, copy soil water content  
        IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
258            DO j = 1, knon            DO j = 1, knon
259               i = ni(j)               i = ni(j)
260               yqsol(j) = qsol(i)               ypct(j) = pctsrf(i, nsrf)
261                 yts(j) = ftsol(i, nsrf)
262                 snow(j) = fsnow(i, nsrf)
263                 yqsurf(j) = qsurf(i, nsrf)
264                 yalb(j) = falbe(i, nsrf)
265                 yrain_f(j) = rain_fall(i)
266                 ysnow_f(j) = snow_f(i)
267                 yagesno(j) = agesno(i, nsrf)
268                 yrugos(j) = frugs(i, nsrf)
269                 yrugoro(j) = rugoro(i)
270                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
271                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
272                 y_run_off_lic_0(j) = run_off_lic_0(i)
273            END DO            END DO
        ELSE  
           yqsol = 0.  
        END IF  
        !$$$ PB ajour pour soil  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ytsoil(j, k) = ftsoil(i, k, nsrf)  
           END DO  
        END DO  
        DO k = 1, klev  
           DO j = 1, knon  
              i = ni(j)  
              ypaprs(j, k) = paprs(i, k)  
              ypplay(j, k) = pplay(i, k)  
              ydelp(j, k) = delp(i, k)  
              yu(j, k) = u(i, k)  
              yv(j, k) = v(i, k)  
              yt(j, k) = t(i, k)  
              yq(j, k) = q(i, k)  
           END DO  
        END DO  
   
        ! calculer Cdrag et les coefficients d'echange  
        CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&  
             yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
        !IM 081204 BEG  
        !CR test  
        IF (iflag_pbl==1) THEN  
           !IM 081204 END  
           CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
           DO k = 1, klev  
              DO i = 1, knon  
                 ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                 ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
              END DO  
           END DO  
        END IF  
274    
275         !IM cf JLD : on seuille ycoefm et ycoefh            ! For continent, copy soil water content
276         IF (nsrf==is_oce) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
           DO j = 1, knon  
              !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
              ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
              !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
              ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
           END DO  
        END IF  
277    
278         !IM: 261103            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
        IF (ok_kzmin) THEN  
           !IM cf FH: 201103 BEG  
           !   Calcul d'une diffusion minimale pour les conditions tres stables.  
           CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, &  
                ycoefm0, ycoefh0)  
279    
           IF (1==1) THEN  
              DO k = 1, klev  
                 DO i = 1, knon  
                    ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                    ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
                 END DO  
              END DO  
           END IF  
           !IM cf FH: 201103 END  
           !IM: 261103  
        END IF !ok_kzmin  
   
        IF (iflag_pbl>=3) THEN  
           ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et Frédéric Hourdin  
           yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
                1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
           DO k = 2, klev  
              yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                   + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                   / ypaprs(1:knon, k) &  
                   * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
           END DO  
280            DO k = 1, klev            DO k = 1, klev
              yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                   / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
           END DO  
           yzlev(1:knon, 1) = 0.  
           yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
           DO k = 2, klev  
              yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
           END DO  
           DO k = 1, klev + 1  
281               DO j = 1, knon               DO j = 1, knon
282                  i = ni(j)                  i = ni(j)
283                  yq2(j, k) = q2(i, k, nsrf)                  ypaprs(j, k) = paprs(i, k)
284                    ypplay(j, k) = pplay(i, k)
285                    ydelp(j, k) = delp(i, k)
286                    yu(j, k) = u(i, k)
287                    yv(j, k) = v(i, k)
288                    yt(j, k) = t(i, k)
289                    yq(j, k) = q(i, k)
290               END DO               END DO
291            END DO            END DO
292    
293            !   Bug introduit volontairement pour converger avec les resultats            ! Calculer les géopotentiels de chaque couche:
294            !  du papier sur les thermiques.  
295            IF (1==1) THEN            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
296               y_cd_m(1:knon) = ycoefm(1:knon, 1)                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
              y_cd_h(1:knon) = ycoefh(1:knon, 1)  
           ELSE  
              y_cd_h(1:knon) = ycoefm(1:knon, 1)  
              y_cd_m(1:knon) = ycoefh(1:knon, 1)  
           END IF  
           CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
297    
298            IF (prt_level>9) THEN            DO k = 2, klev
299               PRINT *, 'USTAR = ', yustar               zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
300                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
301                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
302              ENDDO
303    
304              CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
305                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
306                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
307                   ycdragh(:knon))
308    
309              IF (iflag_pbl == 1) THEN
310                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
311                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
312              end IF
313    
314              ! on met un seuil pour ycdragm et ycdragh
315              IF (nsrf == is_oce) THEN
316                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
317                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
318            END IF            END IF
319    
320            !   iflag_pbl peut etre utilise comme longuer de melange            IF (iflag_pbl >= 6) then
321                 DO k = 1, klev + 1
322                    DO j = 1, knon
323                       i = ni(j)
324                       yq2(j, k) = q2(i, k, nsrf)
325                    END DO
326                 END DO
327              end IF
328    
329              call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
330                   ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
331                   yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
332                   ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
333    
334              CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
335                   ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
336                   ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
337                   y_flux_u(:knon))
338              CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
339                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
340                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
341                   y_flux_v(:knon))
342    
343              CALL clqh(julien, firstcal, nsrf, ni(:knon), ytsoil(:knon, :), &
344                   yqsol(:knon), mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), &
345                   yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
346                   yt(:knon, :), yq(:knon, :), yts(:knon), ypaprs(:knon, :), &
347                   ypplay(:knon, :), ydelp(:knon, :), yrads(:knon), yalb(:knon), &
348                   snow(:knon), yqsurf(:knon), yrain_f(:knon), ysnow_f(:knon), &
349                   yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), &
350                   y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), &
351                   yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), &
352                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), &
353                   y_ffonte(:knon), y_run_off_lic_0(:knon))
354    
355              ! calculer la longueur de rugosite sur ocean
356    
357              yrugm = 0.
358    
359            IF (iflag_pbl>=11) THEN            IF (nsrf == is_oce) THEN
360               CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &               DO j = 1, knon
361                    yu, yv, yteta, y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
362                    iflag_pbl)                       / rg + 0.11 * 14E-6 &
363            ELSE                       / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
364               CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, &                  yrugm(j) = max(1.5E-05, yrugm(j))
365                    yv, yteta, y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)               END DO
366            END IF            END IF
367    
368            ycoefm(1:knon, 1) = y_cd_m(1:knon)            DO k = 1, klev
369            ycoefh(1:knon, 1) = y_cd_h(1:knon)               DO j = 1, knon
370            ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)                  i = ni(j)
371            ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
372         END IF                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
373                    y_d_u(j, k) = y_d_u(j, k) * ypct(j)
374         ! calculer la diffusion des vitesses "u" et "v"                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
375         CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &               END DO
             ydelp, y_d_u, y_flux_u)  
        CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
             ydelp, y_d_v, y_flux_v)  
   
        ! pour le couplage  
        ytaux = y_flux_u(:, 1)  
        ytauy = y_flux_v(:, 1)  
   
        ! calculer la diffusion de "q" et de "h"  
        CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
             cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
             yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
             yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
             ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
             yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
             yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
             yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
             y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
             ytslab, y_seaice)  
   
        ! calculer la longueur de rugosite sur ocean  
        yrugm = 0.  
        IF (nsrf==is_oce) THEN  
           DO j = 1, knon  
              yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                   0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
              yrugm(j) = max(1.5E-05, yrugm(j))  
376            END DO            END DO
        END IF  
        DO j = 1, knon  
           y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
           y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
           yu1(j) = yu1(j)*ypct(j)  
           yv1(j) = yv1(j)*ypct(j)  
        END DO  
377    
378         DO k = 1, klev            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
379              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
380              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
381              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
382    
383              evap(:, nsrf) = -flux_q(:, nsrf)
384    
385              falbe(:, nsrf) = 0.
386              fsnow(:, nsrf) = 0.
387              qsurf(:, nsrf) = 0.
388              frugs(:, nsrf) = 0.
389            DO j = 1, knon            DO j = 1, knon
390               i = ni(j)               i = ni(j)
391               ycoefh(j, k) = ycoefh(j, k)*ypct(j)               d_ts(i, nsrf) = y_d_ts(j)
392               ycoefm(j, k) = ycoefm(j, k)*ypct(j)               falbe(i, nsrf) = yalb(j)
393               y_d_t(j, k) = y_d_t(j, k)*ypct(j)               fsnow(i, nsrf) = snow(j)
394               y_d_q(j, k) = y_d_q(j, k)*ypct(j)               qsurf(i, nsrf) = yqsurf(j)
395               !§§§ PB               frugs(i, nsrf) = yz0_new(j)
396               flux_t(i, k, nsrf) = y_flux_t(j, k)               fluxlat(i, nsrf) = yfluxlat(j)
397               flux_q(i, k, nsrf) = y_flux_q(j, k)               IF (nsrf == is_oce) THEN
398               flux_u(i, k, nsrf) = y_flux_u(j, k)                  rugmer(i) = yrugm(j)
399               flux_v(i, k, nsrf) = y_flux_v(j, k)                  frugs(i, nsrf) = yrugm(j)
400               !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)               END IF
401               !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)               agesno(i, nsrf) = yagesno(j)
402               y_d_u(j, k) = y_d_u(j, k)*ypct(j)               fqcalving(i, nsrf) = y_fqcalving(j)
403               y_d_v(j, k) = y_d_v(j, k)*ypct(j)               ffonte(i, nsrf) = y_ffonte(j)
404               !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
405               !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
406            END DO               dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypct(j)
407         END DO               dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypct(j)
408              END DO
409              IF (nsrf == is_ter) THEN
410                 qsol(ni(:knon)) = yqsol(:knon)
411              else IF (nsrf == is_lic) THEN
412                 DO j = 1, knon
413                    i = ni(j)
414                    run_off_lic_0(i) = y_run_off_lic_0(j)
415                 END DO
416              END IF
417    
418         evap(:, nsrf) = -flux_q(:, 1, nsrf)            ftsoil(:, :, nsrf) = 0.
419              ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
420    
        albe(:, nsrf) = 0.  
        alblw(:, nsrf) = 0.  
        snow(:, nsrf) = 0.  
        qsurf(:, nsrf) = 0.  
        rugos(:, nsrf) = 0.  
        fluxlat(:, nsrf) = 0.  
        DO j = 1, knon  
           i = ni(j)  
           d_ts(i, nsrf) = y_d_ts(j)  
           albe(i, nsrf) = yalb(j)  
           alblw(i, nsrf) = yalblw(j)  
           snow(i, nsrf) = ysnow(j)  
           qsurf(i, nsrf) = yqsurf(j)  
           rugos(i, nsrf) = yz0_new(j)  
           fluxlat(i, nsrf) = yfluxlat(j)  
           !$$$ pb         rugmer(i) = yrugm(j)  
           IF (nsrf==is_oce) THEN  
              rugmer(i) = yrugm(j)  
              rugos(i, nsrf) = yrugm(j)  
           END IF  
           !IM cf JLD ??  
           agesno(i, nsrf) = yagesno(j)  
           fqcalving(i, nsrf) = y_fqcalving(j)  
           ffonte(i, nsrf) = y_ffonte(j)  
           cdragh(i) = cdragh(i) + ycoefh(j, 1)  
           cdragm(i) = cdragm(i) + ycoefm(j, 1)  
           dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
           dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
           zu1(i) = zu1(i) + yu1(j)  
           zv1(i) = zv1(i) + yv1(j)  
        END DO  
        IF (nsrf==is_ter) THEN  
421            DO j = 1, knon            DO j = 1, knon
422               i = ni(j)               i = ni(j)
423               qsol(i) = yqsol(j)               DO k = 1, klev
424            END DO                  d_t(i, k) = d_t(i, k) + y_d_t(j, k)
425         END IF                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
426         IF (nsrf==is_lic) THEN                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
427            DO j = 1, knon                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
428               i = ni(j)               END DO
              run_off_lic_0(i) = y_run_off_lic_0(j)  
429            END DO            END DO
430         END IF  
431         !$$$ PB ajout pour soil            forall (k = 2:klev) coefh(ni(:knon), k) &
432         ftsoil(:, :, nsrf) = 0.                 = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
433         DO k = 1, nsoilmx  
434              ! diagnostic t, q a 2m et u, v a 10m
435    
436            DO j = 1, knon            DO j = 1, knon
437               i = ni(j)               i = ni(j)
438               ftsoil(i, k, nsrf) = ytsoil(j, k)               u1(j) = yu(j, 1) + y_d_u(j, 1)
439            END DO               v1(j) = yv(j, 1) + y_d_v(j, 1)
440         END DO               tair1(j) = yt(j, 1) + y_d_t(j, 1)
441                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
442                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
443                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
444                 tairsol(j) = yts(j) + y_d_ts(j)
445                 rugo1(j) = yrugos(j)
446                 IF (nsrf == is_oce) THEN
447                    rugo1(j) = frugs(i, nsrf)
448                 END IF
449                 psfce(j) = ypaprs(j, 1)
450                 patm(j) = ypplay(j, 1)
451    
452         DO j = 1, knon               qairsol(j) = yqsurf(j)
           i = ni(j)  
           DO k = 1, klev  
              d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
              d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
              !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
              !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
              d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
              d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
              !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
              !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
              zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
453            END DO            END DO
        END DO  
454    
455         !cc diagnostic t, q a 2m et u, v a 10m            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
456                   zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, &
457         DO j = 1, knon                 yq10m, wind10m(:knon), ustar(:knon))
           i = ni(j)  
           uzon(j) = yu(j, 1) + y_d_u(j, 1)  
           vmer(j) = yv(j, 1) + y_d_v(j, 1)  
           tair1(j) = yt(j, 1) + y_d_t(j, 1)  
           qair1(j) = yq(j, 1) + y_d_q(j, 1)  
           zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
                1)))*(ypaprs(j, 1)-ypplay(j, 1))  
           tairsol(j) = yts(j) + y_d_ts(j)  
           rugo1(j) = yrugos(j)  
           IF (nsrf==is_oce) THEN  
              rugo1(j) = rugos(i, nsrf)  
           END IF  
           psfce(j) = ypaprs(j, 1)  
           patm(j) = ypplay(j, 1)  
   
           qairsol(j) = yqsurf(j)  
        END DO  
458    
459         CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &            DO j = 1, knon
460              tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &               i = ni(j)
461              yu10m, yustar)               t2m(i, nsrf) = yt2m(j)
462         !IM 081204 END               q2m(i, nsrf) = yq2m(j)
   
        DO j = 1, knon  
           i = ni(j)  
           t2m(i, nsrf) = yt2m(j)  
           q2m(i, nsrf) = yq2m(j)  
   
           ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
           u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
           v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
463    
464         END DO               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
465                      / sqrt(u1(j)**2 + v1(j)**2)
466                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
467                      / sqrt(u1(j)**2 + v1(j)**2)
468              END DO
469    
470         DO i = 1, knon            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
471            y_cd_h(i) = ycoefh(i, 1)                 y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
472            y_cd_m(i) = ycoefm(i, 1)                 yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
473         END DO                 ytherm, ylcl)
        CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
             y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
             ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
        DO j = 1, knon  
           i = ni(j)  
           pblh(i, nsrf) = ypblh(j)  
           plcl(i, nsrf) = ylcl(j)  
           capcl(i, nsrf) = ycapcl(j)  
           oliqcl(i, nsrf) = yoliqcl(j)  
           cteicl(i, nsrf) = ycteicl(j)  
           pblt(i, nsrf) = ypblt(j)  
           therm(i, nsrf) = ytherm(j)  
           trmb1(i, nsrf) = ytrmb1(j)  
           trmb2(i, nsrf) = ytrmb2(j)  
           trmb3(i, nsrf) = ytrmb3(j)  
        END DO  
474    
        DO j = 1, knon  
           DO k = 1, klev + 1  
              i = ni(j)  
              q2(i, k, nsrf) = yq2(j, k)  
           END DO  
        END DO  
        !IM "slab" ocean  
        IF (nsrf==is_oce) THEN  
475            DO j = 1, knon            DO j = 1, knon
              ! on projette sur la grille globale  
476               i = ni(j)               i = ni(j)
477               IF (pctsrf_new(i, is_oce)>epsfra) THEN               pblh(i, nsrf) = ypblh(j)
478                  flux_o(i) = y_flux_o(j)               plcl(i, nsrf) = ylcl(j)
479               ELSE               capcl(i, nsrf) = ycapcl(j)
480                  flux_o(i) = 0.               oliqcl(i, nsrf) = yoliqcl(j)
481               END IF               cteicl(i, nsrf) = ycteicl(j)
482                 pblt(i, nsrf) = ypblt(j)
483                 therm(i, nsrf) = ytherm(j)
484            END DO            END DO
        END IF  
485    
        IF (nsrf==is_sic) THEN  
486            DO j = 1, knon            DO j = 1, knon
487               i = ni(j)               DO k = 1, klev + 1
488               ! On pondère lorsque l'on fait le bilan au sol :                  i = ni(j)
489               ! flux_g(i) = y_flux_g(j)*ypct(j)                  q2(i, k, nsrf) = yq2(j, k)
490               IF (pctsrf_new(i, is_sic)>epsfra) THEN               END DO
                 flux_g(i) = y_flux_g(j)  
              ELSE  
                 flux_g(i) = 0.  
              END IF  
491            END DO            END DO
492           else
493         END IF            fsnow(:, nsrf) = 0.
494         !nsrf.EQ.is_sic                                                     end IF if_knon
495         IF (ocean=='slab  ') THEN      END DO loop_surface
           IF (nsrf==is_oce) THEN  
              tslab(1:klon) = ytslab(1:klon)  
              seaice(1:klon) = y_seaice(1:klon)  
              !nsrf                                                        
           END IF  
           !OCEAN                                                        
        END IF  
     END DO  
496    
497      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
498      ! A rajouter: conservation de l'albedo      frugs(:, is_oce) = rugmer
499        pctsrf(:, is_oce) = pctsrf_new_oce
500        pctsrf(:, is_sic) = pctsrf_new_sic
501    
502      rugos(:, is_oce) = rugmer      firstcal = .false.
     pctsrf = pctsrf_new  
503    
504    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
505    
506  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.40  
changed lines
  Added in v.300

  ViewVC Help
Powered by ViewVC 1.1.21