/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f90
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/Sources/phylmd/clmain.f revision 207 by guez, Thu Sep 1 10:30:53 2016 UTC trunk/phylmd/Interface_surf/pbl_surface.f90 revision 341 by guez, Mon Oct 21 06:11:44 2019 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ftsol, cdmmax, &    SUBROUTINE pbl_surface(pctsrf, t_seri, q_seri, u, v, julien, mu0, ftsol, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, &         cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, falbe, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &         fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t, d_q, d_u, &
10         rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &         d_v, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, dflux_t, &
11         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &         dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, &
12         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &         cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0, albsol, &
13         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)         sollw, solsw, tsol)
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS)
17        ! Date: Aug. 18th, 1993
18      ! Objet : interface de couche limite (diffusion verticale)      ! Objet : interface de couche limite (diffusion verticale)
19    
20      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
# Line 21  contains Line 22  contains
22      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
23      ! de sol.      ! de sol.
24    
25      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent      use cdrag_m, only: cdrag
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
26      use clqh_m, only: clqh      use clqh_m, only: clqh
27      use clvent_m, only: clvent      use clvent_m, only: clvent
28      use coefkz_m, only: coefkz      use coef_diff_turb_m, only: coef_diff_turb
29      use coefkzmin_m, only: coefkzmin      USE conf_gcm_m, ONLY: lmt_pas
     USE conf_gcm_m, ONLY: prt_level, lmt_pas  
30      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
31      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon
32      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
33      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
34        USE histwrite_phy_m, ONLY: histwrite_phy
35      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
36      USE interfoce_lim_m, ONLY: interfoce_lim      USE interfoce_lim_m, ONLY: interfoce_lim
37        use phyetat0_m, only: masque
38      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
39      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rsigma
40      use time_phylmdz, only: itap      use time_phylmdz, only: itap
     use ustarhb_m, only: ustarhb  
     use vdif_kcay_m, only: vdif_kcay  
     use yamada4_m, only: yamada4  
   
     REAL, INTENT(IN):: dtime ! interval du temps (secondes)  
41    
42      REAL, INTENT(inout):: pctsrf(klon, nbsrf)      REAL, INTENT(inout):: pctsrf(:, :) ! (klon, nbsrf)
43      ! tableau des pourcentages de surface de chaque maille      ! pourcentages de surface de chaque maille
44    
45      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t_seri(:, :) ! (klon, klev) air temperature, in K
46      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q_seri(:, :) ! (klon, klev) mass fraction of water vapor
47      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
48      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
49      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
50      REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temperature du sol (en Kelvin)  
51        REAL, INTENT(INout):: ftsol(:, :) ! (klon, nbsrf)
52        ! skin temperature of surface fraction, in K
53    
54      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
     REAL, INTENT(IN):: ksta, ksta_ter  
     LOGICAL, INTENT(IN):: ok_kzmin  
55    
56      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
57      ! soil temperature of surface fraction      ! soil temperature of surface fraction
58    
59      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
60      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
61    
62      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
63      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: play(klon, klev) ! pression au milieu de couche (Pa)
     REAL, INTENT(inout):: snow(klon, nbsrf)  
     REAL qsurf(klon, nbsrf)  
     REAL evap(klon, nbsrf)  
     REAL, intent(inout):: falbe(klon, nbsrf)  
64    
65      REAL fluxlat(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf)
66        ! column-density of mass of snow at the surface, in kg m-2
67    
68      REAL, intent(in):: rain_fall(klon)      REAL, INTENT(inout):: fqsurf(klon, nbsrf)
69      ! liquid water mass flux (kg/m2/s), positive down      REAL, intent(inout):: falbe(klon, nbsrf)
70    
71      REAL, intent(in):: snow_f(klon)      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
72      ! solid water mass flux (kg/m2/s), positive down      ! flux de chaleur latente, en W m-2
73    
74      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      REAL, intent(in):: rain_fall(klon)
75      REAL, intent(in):: fder(klon)      ! liquid water mass flux (kg / m2 / s), positive down
     REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es  
76    
77      REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)      REAL, intent(in):: snow_fall(klon)
78        ! solid water mass flux (kg / m2 / s), positive down
79    
80      real agesno(klon, nbsrf)      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
81        real, intent(inout):: agesno(:, :) ! (klon, nbsrf)
82      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
83    
84      REAL d_t(klon, klev), d_q(klon, klev)      REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
85      ! d_t------output-R- le changement pour "t"      ! changement pour t_seri et q_seri
     ! d_q------output-R- le changement pour "q"  
86    
87      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
88      ! changement pour "u" et "v"      ! changement pour "u" et "v"
89    
     REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ftsol"  
   
90      REAL, intent(out):: flux_t(klon, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
91      ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
92      ! le bas) à la surface      ! vers le bas) à la surface
93    
94      REAL, intent(out):: flux_q(klon, nbsrf)      REAL, intent(out):: flux_q(klon, nbsrf)
95      ! flux de vapeur d'eau (kg/m2/s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
96    
97      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)      REAL, intent(out):: flux_u(:, :), flux_v(:, :) ! (klon, nbsrf)
98      ! tension du vent à la surface, en Pa      ! tension du vent (flux turbulent de vent) à la surface, en Pa
99    
100      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
101      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
102    
103        ! Ocean slab:
104        REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible
105        REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent
106    
107        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
108        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
109        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
110        ! ce champ sur les quatre sous-surfaces du mod\`ele.
111    
112        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
113    
114      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
115      ! dflux_t derive du flux sensible      ! composantes du vent \`a 10m sans spirale d'Ekman
116      ! dflux_q derive du flux latent  
117      ! IM "slab" ocean      ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
118        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
119      REAL, intent(out):: ycoefh(klon, klev)      ! de sortir les grandeurs par sous-surface.
     REAL, intent(out):: zu1(klon)  
     REAL zv1(klon)  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm  
     ! (Comme les autres diagnostics on cumule dans physiq ce qui  
     ! permet de sortir les grandeurs par sous-surface)  
120      REAL pblh(klon, nbsrf) ! height of planetary boundary layer      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
121      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
122      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
123      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
124      REAL pblt(klon, nbsrf)      REAL, INTENT(inout):: pblt(klon, nbsrf) ! temp\'erature au nveau HCL
     ! pblT------- T au nveau HCL  
125      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
     REAL trmb1(klon, nbsrf)  
     ! trmb1-------deep_cape  
     REAL trmb2(klon, nbsrf)  
     ! trmb2--------inhibition  
     REAL trmb3(klon, nbsrf)  
     ! trmb3-------Point Omega  
126      REAL plcl(klon, nbsrf)      REAL plcl(klon, nbsrf)
127      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
128      ! ffonte----Flux thermique utilise pour fondre la neige      REAL, intent(out):: fqcalving(klon, nbsrf)
129      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! flux d'eau "perdue" par la surface et necessaire pour limiter la
130      !           hauteur de neige, en kg/m2/s      ! hauteur de neige, en kg / m2 / s
131      REAL run_off_lic_0(klon)  
132        real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige
133        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
134    
135        REAL, intent(out):: albsol(:) ! (klon)
136        ! albedo du sol total, visible, moyen par maille
137    
138        REAL, intent(in):: sollw(:) ! (klon)
139        ! surface net downward longwave flux, in W m-2
140    
141        REAL, intent(in):: solsw(:) ! (klon)
142        ! surface net downward shortwave flux, in W m-2
143    
144        REAL, intent(in):: tsol(:) ! (klon)
145    
146      ! Local:      ! Local:
147    
148      LOGICAL:: firstcal = .true.      REAL d_ts(klon, nbsrf) ! variation of ftsol
149        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
150        REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
151    
152      ! la nouvelle repartition des surfaces sortie de l'interface      ! la nouvelle repartition des surfaces sortie de l'interface
153      REAL, save:: pctsrf_new_oce(klon)      REAL, save:: pctsrf_new_oce(klon)
154      REAL, save:: pctsrf_new_sic(klon)      REAL, save:: pctsrf_new_sic(klon)
155    
156      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
157      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon), y_run_off_lic(klon)
158        REAL run_off_lic(klon) ! ruissellement total
159      REAL rugmer(klon)      REAL rugmer(klon)
160      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
161      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), ypctsrf(klon), yz0_new(klon)
162        real yrugos(klon) ! longueur de rugosit\'e, en m
163      REAL yalb(klon)      REAL yalb(klon)
164      REAL yu1(klon), yv1(klon)      REAL snow(klon) ! column-density of mass of snow at the surface, in kg m-2
165      ! on rajoute en output yu1 et yv1 qui sont les vents dans      real yqsurf(klon), yagesno(klon)
166      ! la premiere couche      real yqsol(klon) ! column-density of water in soil, in kg m-2
167      REAL ysnow(klon), yqsurf(klon), yagesno(klon)      REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down
168        REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down
169      real yqsol(klon)      REAL yrugm(klon), radsol(klon), yrugoro(klon)
     ! column-density of water in soil, in kg m-2  
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
     REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
170      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
171      REAL y_d_ts(klon)      REAL y_d_ts(klon)
172      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
173      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
174      REAL y_flux_t(klon), y_flux_q(klon)      REAL y_flux_t(klon), y_flux_q(klon)
175      REAL y_flux_u(klon), y_flux_v(klon)      REAL y_flux_u(klon), y_flux_v(klon)
176      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
177      REAL coefh(klon, klev), coefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
178        real ycdragh(klon), ycdragm(klon)
179      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
180      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
181      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
182        REAL yq2(klon, klev + 1)
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
183      REAL delp(klon, klev)      REAL delp(klon, klev)
184      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
185      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
186    
187      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
188      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
189      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
190    
191      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation      REAL yt2m(klon), yq2m(klon), wind10m(klon)
192        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
193    
194      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
195      REAL ypblh(klon)      REAL ypblh(klon)
# Line 220  contains Line 199  contains
199      REAL ycteicl(klon)      REAL ycteicl(klon)
200      REAL ypblt(klon)      REAL ypblt(klon)
201      REAL ytherm(klon)      REAL ytherm(klon)
202      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
203      REAL ytrmb2(klon)      REAL tair1(klon)
     REAL ytrmb3(klon)  
     REAL uzon(klon), vmer(klon)  
     REAL tair1(klon), qair1(klon), tairsol(klon)  
     REAL psfce(klon), patm(klon)  
   
     REAL qairsol(klon), zgeo1(klon)  
204      REAL rugo1(klon)      REAL rugo1(klon)
205        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
206    
207      !------------------------------------------------------------      !------------------------------------------------------------
208    
209        albsol = sum(falbe * pctsrf, dim = 2)
210    
211        ! R\'epartition sous maille des flux longwave et shortwave
212        ! R\'epartition du longwave par sous-surface lin\'earis\'ee
213    
214        forall (nsrf = 1:nbsrf)
215           fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
216                * (tsol - ftsol(:, nsrf))
217           fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
218        END forall
219    
220      ytherm = 0.      ytherm = 0.
221    
222      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
223         DO i = 1, klon         DO i = 1, klon
224            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
225         END DO         END DO
226      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
227    
228      ! Initialization:      ! Initialization:
229      rugmer = 0.      rugmer = 0.
# Line 256  contains Line 231  contains
231      cdragm = 0.      cdragm = 0.
232      dflux_t = 0.      dflux_t = 0.
233      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
     ypct = 0.  
     yts = 0.  
     ysnow = 0.  
     yqsurf = 0.  
     yrain_f = 0.  
     ysnow_f = 0.  
     yfder = 0.  
     yrugos = 0.  
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
234      ypaprs = 0.      ypaprs = 0.
235      ypplay = 0.      ypplay = 0.
236      ydelp = 0.      ydelp = 0.
     yu = 0.  
     yv = 0.  
     yt = 0.  
     yq = 0.  
     y_dflux_t = 0.  
     y_dflux_q = 0.  
     ytsoil = 999999.  
237      yrugoro = 0.      yrugoro = 0.
238      d_ts = 0.      d_ts = 0.
     yfluxlat = 0.  
239      flux_t = 0.      flux_t = 0.
240      flux_q = 0.      flux_q = 0.
241      flux_u = 0.      flux_u = 0.
242      flux_v = 0.      flux_v = 0.
243        fluxlat = 0.
244      d_t = 0.      d_t = 0.
245      d_q = 0.      d_q = 0.
246      d_u = 0.      d_u = 0.
247      d_v = 0.      d_v = 0.
248      ycoefh = 0.      coefh = 0.
249        fqcalving = 0.
250        run_off_lic = 0.
251    
252      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
253      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
254      ! (\`a affiner)      ! (\`a affiner).
255    
256      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
257      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
258      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - masque
259      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - masque
260    
261      ! Tester si c'est le moment de lire le fichier:      ! Tester si c'est le moment de lire le fichier:
262      if (mod(itap - 1, lmt_pas) == 0) then      if (mod(itap - 1, lmt_pas) == 0) then
263         CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)         CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
264      endif      endif
265    
266      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
267    
268      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
269         ! Chercher les indices :         ! Define ni and knon:
270    
271         ni = 0         ni = 0
272         knon = 0         knon = 0
273    
274         DO i = 1, klon         DO i = 1, klon
275            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
276            ! "potentielles"            ! "potentielles"
# Line 322  contains Line 281  contains
281         END DO         END DO
282    
283         if_knon: IF (knon /= 0) then         if_knon: IF (knon /= 0) then
284            DO j = 1, knon            ypctsrf(:knon) = pctsrf(ni(:knon), nsrf)
285               i = ni(j)            yts(:knon) = ftsol(ni(:knon), nsrf)
286               ypct(j) = pctsrf(i, nsrf)            snow(:knon) = fsnow(ni(:knon), nsrf)
287               yts(j) = ftsol(i, nsrf)            yqsurf(:knon) = fqsurf(ni(:knon), nsrf)
288               ysnow(j) = snow(i, nsrf)            yalb(:knon) = falbe(ni(:knon), nsrf)
289               yqsurf(j) = qsurf(i, nsrf)            yrain_fall(:knon) = rain_fall(ni(:knon))
290               yalb(j) = falbe(i, nsrf)            ysnow_fall(:knon) = snow_fall(ni(:knon))
291               yrain_f(j) = rain_fall(i)            yagesno(:knon) = agesno(ni(:knon), nsrf)
292               ysnow_f(j) = snow_f(i)            yrugos(:knon) = frugs(ni(:knon), nsrf)
293               yagesno(j) = agesno(i, nsrf)            yrugoro(:knon) = rugoro(ni(:knon))
294               yfder(j) = fder(i)            radsol(:knon) = fsolsw(ni(:knon), nsrf) + fsollw(ni(:knon), nsrf)
295               yrugos(j) = rugos(i, nsrf)            ypaprs(:knon, klev + 1) = paprs(ni(:knon), klev + 1)
296               yrugoro(j) = rugoro(i)            y_run_off_lic_0(:knon) = run_off_lic_0(ni(:knon))
              yu1(j) = u1lay(i)  
              yv1(j) = v1lay(i)  
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
              y_run_off_lic_0(j) = run_off_lic_0(i)  
           END DO  
297    
298            ! For continent, copy soil water content            ! For continent, copy soil water content
299            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
300    
301            DO k = 1, nsoilmx            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
              DO j = 1, knon  
                 i = ni(j)  
                 ytsoil(j, k) = ftsoil(i, k, nsrf)  
              END DO  
           END DO  
302    
303            DO k = 1, klev            DO k = 1, klev
304               DO j = 1, knon               DO j = 1, knon
305                  i = ni(j)                  i = ni(j)
306                  ypaprs(j, k) = paprs(i, k)                  ypaprs(j, k) = paprs(i, k)
307                  ypplay(j, k) = pplay(i, k)                  ypplay(j, k) = play(i, k)
308                  ydelp(j, k) = delp(i, k)                  ydelp(j, k) = delp(i, k)
309                  yu(j, k) = u(i, k)                  yu(j, k) = u(i, k)
310                  yv(j, k) = v(i, k)                  yv(j, k) = v(i, k)
311                  yt(j, k) = t(i, k)                  yt(j, k) = t_seri(i, k)
312                  yq(j, k) = q(i, k)                  yq(j, k) = q_seri(i, k)
313               END DO               END DO
314            END DO            END DO
315    
316            ! calculer Cdrag et les coefficients d'echange            ! Calculer les géopotentiels de chaque couche:
           CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &  
                yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))  
           IF (iflag_pbl == 1) THEN  
              CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
           END IF  
317    
318            ! on met un seuil pour coefm et coefh            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
319            IF (nsrf == is_oce) THEN                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
              coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)  
              coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)  
           END IF  
   
           IF (ok_kzmin) THEN  
              ! Calcul d'une diffusion minimale pour les conditions tres stables  
              CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &  
                   coefm(:knon, 1), ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
           END IF  
   
           IF (iflag_pbl >= 3) THEN  
              ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et  
              ! Fr\'ed\'eric Hourdin  
              yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &  
                   + ypplay(:knon, 1))) &  
                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg  
              DO k = 2, klev  
                 yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                      + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                      / ypaprs(1:knon, k) &  
                      * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
              END DO  
              DO k = 1, klev  
                 yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                      / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
              END DO  
              yzlev(1:knon, 1) = 0.  
              yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &  
                   - yzlay(:knon, klev - 1)  
              DO k = 2, klev  
                 yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
              END DO  
              DO k = 1, klev + 1  
                 DO j = 1, knon  
                    i = ni(j)  
                    yq2(j, k) = q2(i, k, nsrf)  
                 END DO  
              END DO  
320    
321               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)            DO k = 2, klev
322               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar               zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
323                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
324                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
325              ENDDO
326    
327               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange            CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
328                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
329                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
330                   ycdragh(:knon))
331    
332               IF (iflag_pbl >= 11) THEN            IF (iflag_pbl == 1) THEN
333                  CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &               ycdragm(:knon) = max(ycdragm(:knon), 0.)
334                       yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &               ycdragh(:knon) = max(ycdragh(:knon), 0.)
335                       iflag_pbl)            end IF
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
336    
337               coefm(:knon, 2:) = ykmm(:knon, 2:klev)            IF (nsrf == is_oce) THEN
338               coefh(:knon, 2:) = ykmn(:knon, 2:klev)               ! On met un seuil pour ycdragm et ycdragh :
339                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
340                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
341            END IF            END IF
342    
343            ! calculer la diffusion des vitesses "u" et "v"            IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf)
344            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &            call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
345                 ypplay, ydelp, y_d_u, y_flux_u(:knon))                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
346            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &                 yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
347                 ypplay, ydelp, y_d_v, y_flux_v(:knon))                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
348    
349            ! calculer la diffusion de "q" et de "h"            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
350            CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
351                 yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
352                 yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), &                 y_flux_u(:knon))
353                 ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, &            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
354                 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
355                 yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
356                 y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)                 y_flux_v(:knon))
357    
358              CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), &
359                   mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), &
360                   yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), &
361                   yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), &
362                   ydelp(:knon, :), radsol(:knon), yalb(:knon), snow(:knon), &
363                   yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), &
364                   yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), &
365                   y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), &
366                   yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), &
367                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), &
368                   y_ffonte(:knon), y_run_off_lic_0(:knon), y_run_off_lic(:knon))
369    
370            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
371    
372            yrugm = 0.            yrugm = 0.
373    
374            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
375               DO j = 1, knon               DO j = 1, knon
376                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
377                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
378                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
379                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
380               END DO               END DO
381            END IF            END IF
           DO j = 1, knon  
              y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
              y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
           END DO  
382    
383            DO k = 1, klev            DO k = 1, klev
384               DO j = 1, knon               DO j = 1, knon
385                  i = ni(j)                  y_d_t(j, k) = y_d_t(j, k) * ypctsrf(j)
386                  coefh(j, k) = coefh(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypctsrf(j)
387                  coefm(j, k) = coefm(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypctsrf(j)
388                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypctsrf(j)
                 y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
                 y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
                 y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
389               END DO               END DO
390            END DO            END DO
391    
392            DO j = 1, knon            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
393               i = ni(j)            flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
394               flux_t(i, nsrf) = y_flux_t(j)            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
395               flux_q(i, nsrf) = y_flux_q(j)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
              flux_u(i, nsrf) = y_flux_u(j)  
              flux_v(i, nsrf) = y_flux_v(j)  
           END DO  
   
           evap(:, nsrf) = -flux_q(:, nsrf)  
396    
397            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
398            snow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
399            qsurf(:, nsrf) = 0.            fqsurf(:, nsrf) = 0.
400            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
           fluxlat(:, nsrf) = 0.  
401            DO j = 1, knon            DO j = 1, knon
402               i = ni(j)               i = ni(j)
403               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
404               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
405               snow(i, nsrf) = ysnow(j)               fsnow(i, nsrf) = snow(j)
406               qsurf(i, nsrf) = yqsurf(j)               fqsurf(i, nsrf) = yqsurf(j)
407               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
408               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
409               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
410                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
411                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
412               END IF               END IF
413               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
414               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
415               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
416               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j) * ypctsrf(j)
417               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j) * ypctsrf(j)
418               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypctsrf(j)
419               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypctsrf(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
420            END DO            END DO
421            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
422               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 525  contains Line 424  contains
424               DO j = 1, knon               DO j = 1, knon
425                  i = ni(j)                  i = ni(j)
426                  run_off_lic_0(i) = y_run_off_lic_0(j)                  run_off_lic_0(i) = y_run_off_lic_0(j)
427                    run_off_lic(i) = y_run_off_lic(j)
428               END DO               END DO
429            END IF            END IF
430    
431            ftsoil(:, :, nsrf) = 0.            ftsoil(:, :, nsrf) = 0.
432            DO k = 1, nsoilmx            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
              DO j = 1, knon  
                 i = ni(j)  
                 ftsoil(i, k, nsrf) = ytsoil(j, k)  
              END DO  
           END DO  
433    
434            DO j = 1, knon            DO j = 1, knon
435               i = ni(j)               i = ni(j)
# Line 543  contains Line 438  contains
438                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
439                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
440                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
                 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)  
441               END DO               END DO
442            END DO            END DO
443    
444            ! diagnostic t, q a 2m et u, v a 10m            forall (k = 2:klev) coefh(ni(:knon), k) &
445                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypctsrf(:knon)
446    
447            DO j = 1, knon            ! Diagnostic temp\'erature, q \`a 2 m et u, v \`a 10 m:
              i = ni(j)  
              uzon(j) = yu(j, 1) + y_d_u(j, 1)  
              vmer(j) = yv(j, 1) + y_d_v(j, 1)  
              tair1(j) = yt(j, 1) + y_d_t(j, 1)  
              qair1(j) = yq(j, 1) + y_d_q(j, 1)  
              zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
                   1)))*(ypaprs(j, 1)-ypplay(j, 1))  
              tairsol(j) = yts(j) + y_d_ts(j)  
              rugo1(j) = yrugos(j)  
              IF (nsrf == is_oce) THEN  
                 rugo1(j) = rugos(i, nsrf)  
              END IF  
              psfce(j) = ypaprs(j, 1)  
              patm(j) = ypplay(j, 1)  
448    
449               qairsol(j) = yqsurf(j)            u1(:knon) = yu(:knon, 1) + y_d_u(:knon, 1)
450            END DO            v1(:knon) = yv(:knon, 1) + y_d_v(:knon, 1)
451              tair1(:knon) = yt(:knon, 1) + y_d_t(:knon, 1)
452    
453              IF (nsrf == is_oce) THEN
454                 rugo1(:knon) = frugs(ni(:knon), is_oce)
455              else
456                 rugo1(:knon) = yrugos(:knon)
457              END IF
458    
459            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), &
460                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 yq(:knon, 1) + y_d_q(:knon, 1), rd * tair1(:knon) &
461                 yt10m, yq10m, yu10m, yustar)                 / (0.5 * (ypaprs(:knon, 1) + ypplay(:knon, 1))) &
462                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)), &
463                   yts(:knon) + y_d_ts(:knon), yqsurf(:knon), rugo1, &
464                   ypaprs(:knon, 1), ypplay(:knon, 1), yt2m, yq2m, yt10m, yq10m, &
465                   wind10m(:knon), ustar(:knon))
466    
467            DO j = 1, knon            DO j = 1, knon
468               i = ni(j)               i = ni(j)
469               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
470               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
471    
472               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
473               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
474               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
475                      / sqrt(u1(j)**2 + v1(j)**2)
476            END DO            END DO
477    
478            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
479                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
480                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
481                   ytherm, ylcl)
482    
483            DO j = 1, knon            DO j = 1, knon
484               i = ni(j)               i = ni(j)
# Line 596  contains Line 489  contains
489               cteicl(i, nsrf) = ycteicl(j)               cteicl(i, nsrf) = ycteicl(j)
490               pblt(i, nsrf) = ypblt(j)               pblt(i, nsrf) = ypblt(j)
491               therm(i, nsrf) = ytherm(j)               therm(i, nsrf) = ytherm(j)
              trmb1(i, nsrf) = ytrmb1(j)  
              trmb2(i, nsrf) = ytrmb2(j)  
              trmb3(i, nsrf) = ytrmb3(j)  
492            END DO            END DO
493    
494            DO j = 1, knon            IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :)
495               DO k = 1, klev + 1         else
496                  i = ni(j)            fsnow(:, nsrf) = 0.
                 q2(i, k, nsrf) = yq2(j, k)  
              END DO  
           END DO  
497         end IF if_knon         end IF if_knon
498      END DO loop_surface      END DO loop_surface
499    
500      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
501      rugos(:, is_oce) = rugmer      frugs(:, is_oce) = rugmer
502      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
503      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
504    
505      firstcal = .false.      CALL histwrite_phy("run_off_lic", run_off_lic)
506        ftsol = ftsol + d_ts ! update surface temperature
507        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
508        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
509        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
510        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
511    
512    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
513    
514  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.207  
changed lines
  Added in v.341

  ViewVC Help
Powered by ViewVC 1.1.21