/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f90
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f90

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 37 by guez, Tue Dec 21 15:45:48 2010 UTC trunk/phylmd/Interface_surf/pbl_surface.f90 revision 343 by guez, Mon Oct 28 08:14:26 2019 UTC
# Line 1  Line 1 
1  SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&  module pbl_surface_m
      jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&  
      soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&  
      qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&  
      rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&  
      cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&  
      d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
      dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&  
      capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&  
      fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)  
   
   ! From phylmd/clmain.F, v 1.6 2005/11/16 14:47:19  
   
   !AA Tout ce qui a trait au traceurs est dans phytrac maintenant  
   !AA pour l'instant le calcul de la couche limite pour les traceurs  
   !AA se fait avec cltrac et ne tient pas compte de la differentiation  
   !AA des sous-fraction de sol.  
   
   !AA Pour pouvoir extraire les coefficient d'echanges et le vent  
   !AA dans la premiere couche, 3 champs supplementaires ont ete crees  
   !AA zcoefh, zu1 et zv1. Pour l'instant nous avons moyenne les valeurs  
   !AA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir  
   !AA si les informations des subsurfaces doivent etre prises en compte  
   !AA il faudra sortir ces memes champs en leur ajoutant une dimension,  
   !AA c'est a dire nbsrf (nbre de subsurface).  
   
   ! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818  
   ! Objet: interface de "couche limite" (diffusion verticale)  
   
   ! Arguments:  
   ! dtime----input-R- interval du temps (secondes)  
   ! itap-----input-I- numero du pas de temps  
   ! date0----input-R- jour initial  
   ! t--------input-R- temperature (K)  
   ! q--------input-R- vapeur d'eau (kg/kg)  
   ! u--------input-R- vitesse u  
   ! v--------input-R- vitesse v  
   ! ts-------input-R- temperature du sol (en Kelvin)  
   ! paprs----input-R- pression a intercouche (Pa)  
   ! pplay----input-R- pression au milieu de couche (Pa)  
   ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2  
   ! rlat-----input-R- latitude en degree  
   ! rugos----input-R- longeur de rugosite (en m)  
   ! cufi-----input-R- resolution des mailles en x (m)  
   ! cvfi-----input-R- resolution des mailles en y (m)  
   
   ! d_t------output-R- le changement pour "t"  
   ! d_q------output-R- le changement pour "q"  
   ! d_u------output-R- le changement pour "u"  
   ! d_v------output-R- le changement pour "v"  
   ! d_ts-----output-R- le changement pour "ts"  
   ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
   !                    (orientation positive vers le bas)  
   ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
   ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
   ! dflux_t derive du flux sensible  
   ! dflux_q derive du flux latent  
   !IM "slab" ocean  
   ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
   ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   ! tslab-in/output-R temperature du slab ocean (en Kelvin) ! uniqmnt pour slab  
   ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
   !cc  
   ! ffonte----Flux thermique utilise pour fondre la neige  
   ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
   !           hauteur de neige, en kg/m2/s  
   !AA on rajoute en output yu1 et yv1 qui sont les vents dans  
   !AA la premiere couche  
   !AA ces 4 variables sont maintenant traites dans phytrac  
   ! itr--------input-I- nombre de traceurs  
   ! tr---------input-R- q. de traceurs  
   ! flux_surf--input-R- flux de traceurs a la surface  
   ! d_tr-------output-R tendance de traceurs  
   !IM cf. AM : PBL  
   ! trmb1-------deep_cape  
   ! trmb2--------inhibition  
   ! trmb3-------Point Omega  
   ! Cape(klon)-------Cape du thermique  
   ! EauLiq(klon)-------Eau liqu integr du thermique  
   ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
   ! lcl------- Niveau de condensation  
   ! pblh------- HCL  
   ! pblT------- T au nveau HCL  
   
   !$$$ PB ajout pour soil  
   
   USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
   use histwrite_m, only: histwrite  
   use calendar, ONLY : ymds2ju  
   USE dimens_m, ONLY : iim, jjm  
   USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
   USE dimphy, ONLY : klev, klon, zmasq  
   USE dimsoil, ONLY : nsoilmx  
   USE temps, ONLY : annee_ref, itau_phy  
   USE dynetat0_m, ONLY : day_ini  
   USE iniprint, ONLY : prt_level  
   USE yomcst, ONLY : rd, rg, rkappa  
   USE conf_phys_m, ONLY : iflag_pbl  
   USE gath_cpl, ONLY : gath2cpl  
   use hbtm_m, only: hbtm  
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5    REAL, INTENT (IN) :: dtime  contains
   REAL date0  
   INTEGER, INTENT (IN) :: itap  
   REAL t(klon, klev), q(klon, klev)  
   REAL u(klon, klev), v(klon, klev)  
   REAL, INTENT (IN) :: paprs(klon, klev+1)  
   REAL, INTENT (IN) :: pplay(klon, klev)  
   REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
   REAL cufi(klon), cvfi(klon)  
   REAL d_t(klon, klev), d_q(klon, klev)  
   REAL d_u(klon, klev), d_v(klon, klev)  
   REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
   REAL dflux_t(klon), dflux_q(klon)  
   !IM "slab" ocean  
   REAL flux_o(klon), flux_g(klon)  
   REAL y_flux_o(klon), y_flux_g(klon)  
   REAL tslab(klon), ytslab(klon)  
   REAL seaice(klon), y_seaice(klon)  
   REAL y_fqcalving(klon), y_ffonte(klon)  
   REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
   REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
   
   REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
   REAL rugmer(klon), agesno(klon, nbsrf)  
   REAL, INTENT (IN) :: rugoro(klon)  
   REAL cdragh(klon), cdragm(klon)  
   ! jour de l'annee en cours                  
   INTEGER jour  
   REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
   ! taux CO2 atmosphere                      
   REAL co2_ppm  
   LOGICAL, INTENT (IN) :: debut  
   LOGICAL, INTENT (IN) :: lafin  
   LOGICAL ok_veget  
   CHARACTER (len=*), INTENT (IN) :: ocean  
   INTEGER npas, nexca  
   
   REAL pctsrf(klon, nbsrf)  
   REAL ts(klon, nbsrf)  
   REAL d_ts(klon, nbsrf)  
   REAL snow(klon, nbsrf)  
   REAL qsurf(klon, nbsrf)  
   REAL evap(klon, nbsrf)  
   REAL albe(klon, nbsrf)  
   REAL alblw(klon, nbsrf)  
   
   REAL fluxlat(klon, nbsrf)  
   
   REAL rain_f(klon), snow_f(klon)  
   REAL fder(klon)  
   
   REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
   REAL rugos(klon, nbsrf)  
   ! la nouvelle repartition des surfaces sortie de l'interface  
   REAL pctsrf_new(klon, nbsrf)  
   
   REAL zcoefh(klon, klev)  
   REAL zu1(klon)  
   REAL zv1(klon)  
   
   !$$$ PB ajout pour soil  
   LOGICAL, INTENT (IN) :: soil_model  
   !IM ajout seuils cdrm, cdrh  
   REAL cdmmax, cdhmax  
   
   REAL ksta, ksta_ter  
   LOGICAL ok_kzmin  
   
   REAL ftsoil(klon, nsoilmx, nbsrf)  
   REAL ytsoil(klon, nsoilmx)  
   REAL qsol(klon)  
   
   EXTERNAL clqh, clvent, coefkz, calbeta, cltrac  
   
   REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)  
   REAL yalb(klon)  
   REAL yalblw(klon)  
   REAL yu1(klon), yv1(klon)  
   REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)  
   REAL yrain_f(klon), ysnow_f(klon)  
   REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
   REAL yfder(klon), ytaux(klon), ytauy(klon)  
   REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
   REAL yfluxlat(klon)  
   
   REAL y_d_ts(klon)  
   REAL y_d_t(klon, klev), y_d_q(klon, klev)  
   REAL y_d_u(klon, klev), y_d_v(klon, klev)  
   REAL y_flux_t(klon, klev), y_flux_q(klon, klev)  
   REAL y_flux_u(klon, klev), y_flux_v(klon, klev)  
   REAL y_dflux_t(klon), y_dflux_q(klon)  
   REAL ycoefh(klon, klev), ycoefm(klon, klev)  
   REAL yu(klon, klev), yv(klon, klev)  
   REAL yt(klon, klev), yq(klon, klev)  
   REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)  
   
   LOGICAL ok_nonloc  
   PARAMETER (ok_nonloc=.FALSE.)  
   REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
   !IM 081204 hcl_Anne ? BEG  
   REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
   REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
   REAL ykmq(klon, klev+1)  
   REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
   REAL q2diag(klon, klev+1)  
   !IM 081204 hcl_Anne ? END  
   
   REAL u1lay(klon), v1lay(klon)  
   REAL delp(klon, klev)  
   INTEGER i, k, nsrf  
   
   INTEGER ni(klon), knon, j  
   ! Introduction d'une variable "pourcentage potentiel" pour tenir compte  
   ! des eventuelles apparitions et/ou disparitions de la glace de mer  
   REAL pctsrf_pot(klon, nbsrf)  
   
   REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.  
   
   ! maf pour sorties IOISPL en cas de debugagage  
   
   CHARACTER (80) cldebug  
   SAVE cldebug  
   CHARACTER (8) cl_surf(nbsrf)  
   SAVE cl_surf  
   INTEGER nhoridbg, nidbg  
   SAVE nhoridbg, nidbg  
   INTEGER ndexbg(iim*(jjm+1))  
   REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
   REAL tabindx(klon)  
   REAL debugtab(iim, jjm+1)  
   LOGICAL first_appel  
   SAVE first_appel  
   DATA first_appel/ .TRUE./  
   LOGICAL :: debugindex = .FALSE.  
   INTEGER idayref  
   REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
   REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
   REAL yt2m(klon), yq2m(klon), yu10m(klon)  
   REAL yustar(klon)  
   ! -- LOOP  
   REAL yu10mx(klon)  
   REAL yu10my(klon)  
   REAL ywindsp(klon)  
   ! -- LOOP  
   
   REAL yt10m(klon), yq10m(klon)  
   !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
   ! physiq ce qui permet de sortir les grdeurs par sous surface)  
   REAL pblh(klon, nbsrf)  
   REAL plcl(klon, nbsrf)  
   REAL capcl(klon, nbsrf)  
   REAL oliqcl(klon, nbsrf)  
   REAL cteicl(klon, nbsrf)  
   REAL pblt(klon, nbsrf)  
   REAL therm(klon, nbsrf)  
   REAL trmb1(klon, nbsrf)  
   REAL trmb2(klon, nbsrf)  
   REAL trmb3(klon, nbsrf)  
   REAL ypblh(klon)  
   REAL ylcl(klon)  
   REAL ycapcl(klon)  
   REAL yoliqcl(klon)  
   REAL ycteicl(klon)  
   REAL ypblt(klon)  
   REAL ytherm(klon)  
   REAL ytrmb1(klon)  
   REAL ytrmb2(klon)  
   REAL ytrmb3(klon)  
   REAL y_cd_h(klon), y_cd_m(klon)  
   REAL uzon(klon), vmer(klon)  
   REAL tair1(klon), qair1(klon), tairsol(klon)  
   REAL psfce(klon), patm(klon)  
   
   REAL qairsol(klon), zgeo1(klon)  
   REAL rugo1(klon)  
   
   ! utiliser un jeu de fonctions simples                
   LOGICAL zxli  
   PARAMETER (zxli=.FALSE.)  
   
   REAL zt, zqs, zdelta, zcor  
   REAL t_coup  
   PARAMETER (t_coup=273.15)  
   
   CHARACTER (len=20) :: modname = 'clmain'  
   
   !------------------------------------------------------------  
   
   ! initialisation Anne  
   ytherm = 0.  
   
   IF (debugindex .AND. first_appel) THEN  
      first_appel = .FALSE.  
   
      ! initialisation sorties netcdf  
   
      idayref = day_ini  
      CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian)  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
      DO i = 1, iim  
         zx_lon(i, 1) = rlon(i+1)  
         zx_lon(i, jjm+1) = rlon(i+1)  
      END DO  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
      cldebug = 'sous_index'  
      CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
           iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
      ! no vertical axis  
      cl_surf(1) = 'ter'  
      cl_surf(2) = 'lic'  
      cl_surf(3) = 'oce'  
      cl_surf(4) = 'sic'  
      DO nsrf = 1, nbsrf  
         CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
              nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
      END DO  
      CALL histend(nidbg)  
      CALL histsync(nidbg)  
   END IF  
   
   DO k = 1, klev ! epaisseur de couche  
      DO i = 1, klon  
         delp(i, k) = paprs(i, k) - paprs(i, k+1)  
      END DO  
   END DO  
   DO i = 1, klon ! vent de la premiere couche  
      zx_alf1 = 1.0  
      zx_alf2 = 1.0 - zx_alf1  
      u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
      v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
   END DO  
   
   ! initialisation:  
   
   DO i = 1, klon  
      rugmer(i) = 0.0  
      cdragh(i) = 0.0  
      cdragm(i) = 0.0  
      dflux_t(i) = 0.0  
      dflux_q(i) = 0.0  
      zu1(i) = 0.0  
      zv1(i) = 0.0  
   END DO  
   ypct = 0.0  
   yts = 0.0  
   ysnow = 0.0  
   yqsurf = 0.0  
   yalb = 0.0  
   yalblw = 0.0  
   yrain_f = 0.0  
   ysnow_f = 0.0  
   yfder = 0.0  
   ytaux = 0.0  
   ytauy = 0.0  
   ysolsw = 0.0  
   ysollw = 0.0  
   ysollwdown = 0.0  
   yrugos = 0.0  
   yu1 = 0.0  
   yv1 = 0.0  
   yrads = 0.0  
   ypaprs = 0.0  
   ypplay = 0.0  
   ydelp = 0.0  
   yu = 0.0  
   yv = 0.0  
   yt = 0.0  
   yq = 0.0  
   pctsrf_new = 0.0  
   y_flux_u = 0.0  
   y_flux_v = 0.0  
   !$$ PB  
   y_dflux_t = 0.0  
   y_dflux_q = 0.0  
   ytsoil = 999999.  
   yrugoro = 0.  
   ! -- LOOP  
   yu10mx = 0.0  
   yu10my = 0.0  
   ywindsp = 0.0  
   ! -- LOOP  
   DO nsrf = 1, nbsrf  
      DO i = 1, klon  
         d_ts(i, nsrf) = 0.0  
      END DO  
   END DO  
   !§§§ PB  
   yfluxlat = 0.  
   flux_t = 0.  
   flux_q = 0.  
   flux_u = 0.  
   flux_v = 0.  
   DO k = 1, klev  
      DO i = 1, klon  
         d_t(i, k) = 0.0  
         d_q(i, k) = 0.0  
         !$$$         flux_t(i, k) = 0.0  
         !$$$         flux_q(i, k) = 0.0  
         d_u(i, k) = 0.0  
         d_v(i, k) = 0.0  
         !$$$         flux_u(i, k) = 0.0  
         !$$$         flux_v(i, k) = 0.0  
         zcoefh(i, k) = 0.0  
      END DO  
   END DO  
   !AA      IF (itr.GE.1) THEN  
   !AA      DO it = 1, itr  
   !AA      DO k = 1, klev  
   !AA      DO i = 1, klon  
   !AA         d_tr(i, k, it) = 0.0  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDIF  
   
   
   ! Boucler sur toutes les sous-fractions du sol:  
   
   ! Initialisation des "pourcentages potentiels". On considere ici qu'on  
   ! peut avoir potentiellementdela glace sur tout le domaine oceanique  
   ! (a affiner)  
   
   pctsrf_pot = pctsrf  
   pctsrf_pot(:, is_oce) = 1. - zmasq  
   pctsrf_pot(:, is_sic) = 1. - zmasq  
   
   DO nsrf = 1, nbsrf  
      ! chercher les indices:  
      ni = 0  
      knon = 0  
      DO i = 1, klon  
         ! pour determiner le domaine a traiter on utilise les surfaces  
         ! "potentielles"  
         IF (pctsrf_pot(i, nsrf) > epsfra) THEN  
            knon = knon + 1  
            ni(knon) = i  
         END IF  
      END DO  
   
      ! variables pour avoir une sortie IOIPSL des INDEX  
      IF (debugindex) THEN  
         tabindx = 0.  
         DO i = 1, knon  
            tabindx(i) = real(i)  
         END DO  
         debugtab = 0.  
         ndexbg = 0  
         CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
         CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
      END IF  
   
      IF (knon==0) CYCLE  
   
      DO j = 1, knon  
         i = ni(j)  
         ypct(j) = pctsrf(i, nsrf)  
         yts(j) = ts(i, nsrf)  
         ytslab(i) = tslab(i)  
         ysnow(j) = snow(i, nsrf)  
         yqsurf(j) = qsurf(i, nsrf)  
         yalb(j) = albe(i, nsrf)  
         yalblw(j) = alblw(i, nsrf)  
         yrain_f(j) = rain_f(i)  
         ysnow_f(j) = snow_f(i)  
         yagesno(j) = agesno(i, nsrf)  
         yfder(j) = fder(i)  
         ytaux(j) = flux_u(i, 1, nsrf)  
         ytauy(j) = flux_v(i, 1, nsrf)  
         ysolsw(j) = solsw(i, nsrf)  
         ysollw(j) = sollw(i, nsrf)  
         ysollwdown(j) = sollwdown(i)  
         yrugos(j) = rugos(i, nsrf)  
         yrugoro(j) = rugoro(i)  
         yu1(j) = u1lay(i)  
         yv1(j) = v1lay(i)  
         yrads(j) = ysolsw(j) + ysollw(j)  
         ypaprs(j, klev+1) = paprs(i, klev+1)  
         y_run_off_lic_0(j) = run_off_lic_0(i)  
         yu10mx(j) = u10m(i, nsrf)  
         yu10my(j) = v10m(i, nsrf)  
         ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
      END DO  
   
      !     IF bucket model for continent, copy soil water content  
      IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
         DO j = 1, knon  
            i = ni(j)  
            yqsol(j) = qsol(i)  
         END DO  
      ELSE  
         yqsol = 0.  
      END IF  
      !$$$ PB ajour pour soil  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ytsoil(j, k) = ftsoil(i, k, nsrf)  
         END DO  
      END DO  
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ypaprs(j, k) = paprs(i, k)  
            ypplay(j, k) = pplay(i, k)  
            ydelp(j, k) = delp(i, k)  
            yu(j, k) = u(i, k)  
            yv(j, k) = v(i, k)  
            yt(j, k) = t(i, k)  
            yq(j, k) = q(i, k)  
         END DO  
      END DO  
   
      ! calculer Cdrag et les coefficients d'echange  
      CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&  
           yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
      !IM 081204 BEG  
      !CR test  
      IF (iflag_pbl==1) THEN  
         !IM 081204 END  
         CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
         DO k = 1, klev  
            DO i = 1, knon  
               ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
               ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
            END DO  
         END DO  
      END IF  
   
      !IM cf JLD : on seuille ycoefm et ycoefh  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
            ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
            !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
            ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
         END DO  
      END IF  
   
   
      !IM: 261103  
      IF (ok_kzmin) THEN  
         !IM cf FH: 201103 BEG  
         !   Calcul d'une diffusion minimale pour les conditions tres stables.  
         CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, ycoefm0, &  
              ycoefh0)  
         !      call dump2d(iim, jjm-1, ycoefm(2:klon-1, 2), 'KZ         ')  
         !      call dump2d(iim, jjm-1, ycoefm0(2:klon-1, 2), 'KZMIN      ')  
   
         IF (1==1) THEN  
            DO k = 1, klev  
               DO i = 1, knon  
                  ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                  ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
               END DO  
            END DO  
         END IF  
         !IM cf FH: 201103 END  
         !IM: 261103  
      END IF !ok_kzmin  
   
      IF (iflag_pbl>=3) THEN  
   
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
         ! MELLOR ET YAMADA adapte a Mars Richard Fournier et Frederic Hourdin  
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
         yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
              1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
         DO k = 2, klev  
            yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                 + rd*0.5*(yt(1:knon, k-1) +yt(1: knon, k)) &  
                 / ypaprs(1:knon, k) *(ypplay(1:knon, k-1)-ypplay(1:knon, k))/ &  
                 rg  
         END DO  
         DO k = 1, klev  
            yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                 / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
         END DO  
         yzlev(1:knon, 1) = 0.  
         yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
         DO k = 2, klev  
            yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
         END DO  
         DO k = 1, klev + 1  
            DO j = 1, knon  
               i = ni(j)  
               yq2(j, k) = q2(i, k, nsrf)  
            END DO  
         END DO  
   
   
         !   Bug introduit volontairement pour converger avec les resultats  
         !  du papier sur les thermiques.  
         IF (1==1) THEN  
            y_cd_m(1:knon) = ycoefm(1:knon, 1)  
            y_cd_h(1:knon) = ycoefh(1:knon, 1)  
         ELSE  
            y_cd_h(1:knon) = ycoefm(1:knon, 1)  
            y_cd_m(1:knon) = ycoefh(1:knon, 1)  
         END IF  
         CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
   
         IF (prt_level>9) THEN  
            PRINT *, 'USTAR = ', yustar  
         END IF  
   
         !   iflag_pbl peut etre utilise comme longuer de melange  
   
         IF (iflag_pbl>=11) THEN  
            CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, iflag_pbl)  
         ELSE  
            CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
         END IF  
   
         ycoefm(1:knon, 1) = y_cd_m(1:knon)  
         ycoefh(1:knon, 1) = y_cd_h(1:knon)  
         ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)  
         ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)  
   
   
      END IF  
   
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
      ! calculer la diffusion des vitesses "u" et "v"  
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &  
           ydelp, y_d_u, y_flux_u)  
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
           ydelp, y_d_v, y_flux_v)  
   
      ! pour le couplage  
      ytaux = y_flux_u(:, 1)  
      ytauy = y_flux_v(:, 1)  
   
      ! FH modif sur le cdrag temperature  
      !$$$PB : déplace dans clcdrag  
      !$$$      do i=1, knon  
      !$$$         ycoefh(i, 1)=ycoefm(i, 1)*0.8  
      !$$$      enddo  
   
      ! calculer la diffusion de "q" et de "h"  
      CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
           cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
           yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
           yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
           ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
           yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
           yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
           yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
           y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
           ytslab, y_seaice)  
   
      ! calculer la longueur de rugosite sur ocean  
      yrugm = 0.  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                 0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
            yrugm(j) = max(1.5E-05, yrugm(j))  
         END DO  
      END IF  
      DO j = 1, knon  
         y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
         y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
         yu1(j) = yu1(j)*ypct(j)  
         yv1(j) = yv1(j)*ypct(j)  
      END DO  
   
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ycoefh(j, k) = ycoefh(j, k)*ypct(j)  
            ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
            y_d_t(j, k) = y_d_t(j, k)*ypct(j)  
            y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
            !§§§ PB  
            flux_t(i, k, nsrf) = y_flux_t(j, k)  
            flux_q(i, k, nsrf) = y_flux_q(j, k)  
            flux_u(i, k, nsrf) = y_flux_u(j, k)  
            flux_v(i, k, nsrf) = y_flux_v(j, k)  
            !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
            !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
            y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
            y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
            !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
            !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
         END DO  
      END DO  
   
   
      evap(:, nsrf) = -flux_q(:, 1, nsrf)  
   
      albe(:, nsrf) = 0.  
      alblw(:, nsrf) = 0.  
      snow(:, nsrf) = 0.  
      qsurf(:, nsrf) = 0.  
      rugos(:, nsrf) = 0.  
      fluxlat(:, nsrf) = 0.  
      DO j = 1, knon  
         i = ni(j)  
         d_ts(i, nsrf) = y_d_ts(j)  
         albe(i, nsrf) = yalb(j)  
         alblw(i, nsrf) = yalblw(j)  
         snow(i, nsrf) = ysnow(j)  
         qsurf(i, nsrf) = yqsurf(j)  
         rugos(i, nsrf) = yz0_new(j)  
         fluxlat(i, nsrf) = yfluxlat(j)  
         !$$$ pb         rugmer(i) = yrugm(j)  
         IF (nsrf==is_oce) THEN  
            rugmer(i) = yrugm(j)  
            rugos(i, nsrf) = yrugm(j)  
         END IF  
         !IM cf JLD ??  
         agesno(i, nsrf) = yagesno(j)  
         fqcalving(i, nsrf) = y_fqcalving(j)  
         ffonte(i, nsrf) = y_ffonte(j)  
         cdragh(i) = cdragh(i) + ycoefh(j, 1)  
         cdragm(i) = cdragm(i) + ycoefm(j, 1)  
         dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
         dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
         zu1(i) = zu1(i) + yu1(j)  
         zv1(i) = zv1(i) + yv1(j)  
      END DO  
      IF (nsrf==is_ter) THEN  
         DO j = 1, knon  
            i = ni(j)  
            qsol(i) = yqsol(j)  
         END DO  
      END IF  
      IF (nsrf==is_lic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            run_off_lic_0(i) = y_run_off_lic_0(j)  
         END DO  
      END IF  
      !$$$ PB ajout pour soil  
      ftsoil(:, :, nsrf) = 0.  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ftsoil(i, k, nsrf) = ytsoil(j, k)  
         END DO  
      END DO  
   
      DO j = 1, knon  
         i = ni(j)  
         DO k = 1, klev  
            d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
            d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
            !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
            !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
            d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
            d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
            !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
            !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
            zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
         END DO  
      END DO  
   
   
      !cc diagnostic t, q a 2m et u, v a 10m  
   
      DO j = 1, knon  
         i = ni(j)  
         uzon(j) = yu(j, 1) + y_d_u(j, 1)  
         vmer(j) = yv(j, 1) + y_d_v(j, 1)  
         tair1(j) = yt(j, 1) + y_d_t(j, 1)  
         qair1(j) = yq(j, 1) + y_d_q(j, 1)  
         zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
              1)))*(ypaprs(j, 1)-ypplay(j, 1))  
         tairsol(j) = yts(j) + y_d_ts(j)  
         rugo1(j) = yrugos(j)  
         IF (nsrf==is_oce) THEN  
            rugo1(j) = rugos(i, nsrf)  
         END IF  
         psfce(j) = ypaprs(j, 1)  
         patm(j) = ypplay(j, 1)  
   
         qairsol(j) = yqsurf(j)  
      END DO  
   
      CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &  
           tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &  
           yu10m, yustar)  
      !IM 081204 END  
   
      DO j = 1, knon  
         i = ni(j)  
         t2m(i, nsrf) = yt2m(j)  
         q2m(i, nsrf) = yq2m(j)  
   
         ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
         u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
         v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
   
      END DO  
   
      DO i = 1, knon  
         y_cd_h(i) = ycoefh(i, 1)  
         y_cd_m(i) = ycoefm(i, 1)  
      END DO  
      CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
           y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
           ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
      DO j = 1, knon  
         i = ni(j)  
         pblh(i, nsrf) = ypblh(j)  
         plcl(i, nsrf) = ylcl(j)  
         capcl(i, nsrf) = ycapcl(j)  
         oliqcl(i, nsrf) = yoliqcl(j)  
         cteicl(i, nsrf) = ycteicl(j)  
         pblt(i, nsrf) = ypblt(j)  
         therm(i, nsrf) = ytherm(j)  
         trmb1(i, nsrf) = ytrmb1(j)  
         trmb2(i, nsrf) = ytrmb2(j)  
         trmb3(i, nsrf) = ytrmb3(j)  
      END DO  
   
   
      DO j = 1, knon  
         DO k = 1, klev + 1  
            i = ni(j)  
            q2(i, k, nsrf) = yq2(j, k)  
         END DO  
      END DO  
      !IM "slab" ocean  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            ! on projette sur la grille globale  
            i = ni(j)  
            IF (pctsrf_new(i, is_oce)>epsfra) THEN  
               flux_o(i) = y_flux_o(j)  
            ELSE  
               flux_o(i) = 0.  
            END IF  
         END DO  
      END IF  
   
      IF (nsrf==is_sic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            !IM 230604 on pondere lorsque l'on fait le bilan au sol :  flux_g(i) = y_flux_g(j)*ypct(j)  
            IF (pctsrf_new(i, is_sic)>epsfra) THEN  
               flux_g(i) = y_flux_g(j)  
            ELSE  
               flux_g(i) = 0.  
            END IF  
         END DO  
   
      END IF  
      !nsrf.EQ.is_sic                                              
      IF (ocean=='slab  ') THEN  
         IF (nsrf==is_oce) THEN  
            tslab(1:klon) = ytslab(1:klon)  
            seaice(1:klon) = y_seaice(1:klon)  
            !nsrf                                                        
         END IF  
         !OCEAN                                                        
      END IF  
   END DO  
6    
7    ! On utilise les nouvelles surfaces    SUBROUTINE pbl_surface(pctsrf, t_seri, q_seri, u_seri, v_seri, julien, mu0, &
8    ! A rajouter: conservation de l'albedo         ftsol, cdmmax, cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, falbe, &
9           fluxlat, rain_fall, snow_fall, frugs, agesno, rugoro, d_t, d_q, d_u, &
10           d_v, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, dflux_t, &
11           dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, &
12           cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0, albsol, &
13           sollw, solsw, tsol)
14    
15        ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16        ! Author: Z. X. Li (LMD/CNRS)
17        ! Date: Aug. 18th, 1993
18        ! Objet : interface de couche limite (diffusion verticale)
19    
20        ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
21        ! de la couche limite pour les traceurs se fait avec "cltrac" et
22        ! ne tient pas compte de la diff\'erentiation des sous-fractions
23        ! de sol.
24    
25        use cdrag_m, only: cdrag
26        use clqh_m, only: clqh
27        use clvent_m, only: clvent
28        use coef_diff_turb_m, only: coef_diff_turb
29        USE conf_gcm_m, ONLY: lmt_pas
30        USE conf_phys_m, ONLY: iflag_pbl
31        USE dimphy, ONLY: klev, klon
32        USE dimsoil, ONLY: nsoilmx
33        use hbtm_m, only: hbtm
34        USE histwrite_phy_m, ONLY: histwrite_phy
35        USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
36        USE interfoce_lim_m, ONLY: interfoce_lim
37        use phyetat0_m, only: masque
38        use stdlevvar_m, only: stdlevvar
39        USE suphec_m, ONLY: rd, rg, rsigma
40        use time_phylmdz, only: itap
41    
42        REAL, INTENT(inout):: pctsrf(:, :) ! (klon, nbsrf)
43        ! pourcentages de surface de chaque maille
44    
45        REAL, INTENT(IN):: t_seri(:, :) ! (klon, klev) air temperature, in K
46        REAL, INTENT(IN):: q_seri(:, :) ! (klon, klev) mass fraction of water vapor
47        REAL, INTENT(IN):: u_seri(:, :), v_seri(:, :) ! (klon, klev) wind, in m s -1
48        INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
49        REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
50    
51        REAL, INTENT(INout):: ftsol(:, :) ! (klon, nbsrf)
52        ! skin temperature of surface fraction, in K
53    
54        REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
55    
56        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
57        ! soil temperature of surface fraction
58    
59        REAL, INTENT(inout):: qsol(:) ! (klon)
60        ! column-density of water in soil, in kg m-2
61    
62        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
63        REAL, INTENT(IN):: play(klon, klev) ! pression au milieu de couche (Pa)
64    
65        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf)
66        ! column-density of mass of snow at the surface, in kg m-2
67    
68        REAL, INTENT(inout):: fqsurf(klon, nbsrf)
69        REAL, intent(inout):: falbe(klon, nbsrf)
70    
71        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
72        ! flux de chaleur latente, en W m-2
73    
74        REAL, intent(in):: rain_fall(klon)
75        ! liquid water mass flux (kg / m2 / s), positive down
76    
77        REAL, intent(in):: snow_fall(klon)
78        ! solid water mass flux (kg / m2 / s), positive down
79    
80        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
81        real, intent(inout):: agesno(:, :) ! (klon, nbsrf)
82        REAL, INTENT(IN):: rugoro(klon)
83    
84        REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
85        ! changement pour t_seri et q_seri
86    
87        REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
88        ! changement pour "u_seri" et "v_seri"
89    
90        REAL, intent(out):: flux_t(klon, nbsrf)
91        ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
92        ! vers le bas) à la surface
93    
94        REAL, intent(out):: flux_q(klon, nbsrf)
95        ! flux de vapeur d'eau (kg / m2 / s) à la surface
96    
97        REAL, intent(out):: flux_u(:, :), flux_v(:, :) ! (klon, nbsrf)
98        ! tension du vent (flux turbulent de vent) à la surface, en Pa
99    
100        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
101        real q2(klon, klev + 1, nbsrf)
102    
103        ! Ocean slab:
104        REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible
105        REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent
106    
107        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
108        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
109        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
110        ! ce champ sur les quatre sous-surfaces du mod\`ele.
111    
112        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
113    
114        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
115        ! composantes du vent \`a 10m sans spirale d'Ekman
116    
117        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
118        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
119        ! de sortir les grandeurs par sous-surface.
120        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
121        REAL capcl(klon, nbsrf)
122        REAL oliqcl(klon, nbsrf)
123        REAL cteicl(klon, nbsrf)
124        REAL, INTENT(inout):: pblt(:, :) ! (klon, nbsrf) temp\'erature au nveau HCL
125        REAL therm(klon, nbsrf)
126        REAL plcl(klon, nbsrf)
127    
128        REAL, intent(out):: fqcalving(klon, nbsrf)
129        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
130        ! hauteur de neige, en kg / m2 / s
131    
132        real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige
133        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
134    
135        REAL, intent(out):: albsol(:) ! (klon)
136        ! albedo du sol total, visible, moyen par maille
137    
138        REAL, intent(in):: sollw(:) ! (klon)
139        ! surface net downward longwave flux, in W m-2
140    
141        REAL, intent(in):: solsw(:) ! (klon)
142        ! surface net downward shortwave flux, in W m-2
143    
144        REAL, intent(in):: tsol(:) ! (klon)
145    
146        ! Local:
147    
148        REAL d_ts(klon, nbsrf) ! variation of ftsol
149        REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface
150        REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface
151    
152        ! la nouvelle repartition des surfaces sortie de l'interface
153        REAL, save:: pctsrf_new_oce(klon)
154        REAL, save:: pctsrf_new_sic(klon)
155    
156        REAL y_fqcalving(klon), y_ffonte(klon)
157        real y_run_off_lic_0(klon), y_run_off_lic(klon)
158        REAL run_off_lic(klon) ! ruissellement total
159        REAL rugmer(klon)
160        REAL ytsoil(klon, nsoilmx)
161        REAL yts(klon), ypctsrf(klon), yz0_new(klon)
162        real yrugos(klon) ! longueur de rugosit\'e, en m
163        REAL yalb(klon)
164        REAL snow(klon) ! column-density of mass of snow at the surface, in kg m-2
165        real yqsurf(klon), yagesno(klon)
166        real yqsol(klon) ! column-density of water in soil, in kg m-2
167        REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down
168        REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down
169        REAL yrugm(klon), radsol(klon), yrugoro(klon)
170        REAL yfluxlat(klon)
171        REAL y_d_ts(klon)
172        REAL y_d_t(klon, klev), y_d_q(klon, klev)
173        REAL y_d_u(klon, klev), y_d_v(klon, klev)
174        REAL y_flux_t(klon), y_flux_q(klon)
175        REAL y_flux_u(klon), y_flux_v(klon)
176        REAL y_dflux_t(klon), y_dflux_q(klon)
177        REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
178        real ycdragh(klon), ycdragm(klon)
179        REAL yu(klon, klev), yv(klon, klev)
180        REAL yt(klon, klev), yq(klon, klev)
181        REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
182        REAL yq2(klon, klev + 1)
183        REAL delp(klon, klev)
184        INTEGER i, k, nsrf
185        INTEGER ni(klon), knon, j
186    
187        REAL pctsrf_pot(klon, nbsrf)
188        ! "pourcentage potentiel" pour tenir compte des \'eventuelles
189        ! apparitions ou disparitions de la glace de mer
190    
191        REAL yt2m(klon), yq2m(klon), wind10m(klon)
192        REAL ustar(klon)
193    
194        REAL yt10m(klon), yq10m(klon)
195        REAL ypblh(klon)
196        REAL ylcl(klon)
197        REAL ycapcl(klon)
198        REAL yoliqcl(klon)
199        REAL ycteicl(klon)
200        REAL ypblt(klon)
201        REAL ytherm(klon)
202        REAL u1(klon), v1(klon)
203        REAL tair1(klon)
204        REAL rugo1(klon)
205        REAL zgeop(klon, klev)
206    
207        !------------------------------------------------------------
208    
209        albsol = sum(falbe * pctsrf, dim = 2)
210    
211        ! R\'epartition sous maille des flux longwave et shortwave
212        ! R\'epartition du longwave par sous-surface lin\'earis\'ee
213    
214        forall (nsrf = 1:nbsrf)
215           fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 &
216                * (tsol - ftsol(:, nsrf))
217           fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol)
218        END forall
219    
220        ytherm = 0.
221    
222        DO k = 1, klev ! epaisseur de couche
223           DO i = 1, klon
224              delp(i, k) = paprs(i, k) - paprs(i, k + 1)
225           END DO
226        END DO
227    
228        ! Initialization:
229        rugmer = 0.
230        cdragh = 0.
231        cdragm = 0.
232        dflux_t = 0.
233        dflux_q = 0.
234        ypaprs = 0.
235        ypplay = 0.
236        ydelp = 0.
237        yrugoro = 0.
238        d_ts = 0.
239        flux_t = 0.
240        flux_q = 0.
241        flux_u = 0.
242        flux_v = 0.
243        fluxlat = 0.
244        d_t = 0.
245        d_q = 0.
246        d_u = 0.
247        d_v = 0.
248        coefh = 0.
249        fqcalving = 0.
250        run_off_lic = 0.
251    
252        ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
253        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
254        ! (\`a affiner).
255    
256        pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
257        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
258        pctsrf_pot(:, is_oce) = 1. - masque
259        pctsrf_pot(:, is_sic) = 1. - masque
260    
261        ! Tester si c'est le moment de lire le fichier:
262        if (mod(itap - 1, lmt_pas) == 0) then
263           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
264        endif
265    
266        ! Boucler sur toutes les sous-fractions du sol:
267    
268        loop_surface: DO nsrf = 1, nbsrf
269           ! Define ni and knon:
270    
271           ni = 0
272           knon = 0
273    
274           DO i = 1, klon
275              ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
276              ! "potentielles"
277              IF (pctsrf_pot(i, nsrf) > epsfra) THEN
278                 knon = knon + 1
279                 ni(knon) = i
280              END IF
281           END DO
282    
283           if_knon: IF (knon /= 0) then
284              ypctsrf(:knon) = pctsrf(ni(:knon), nsrf)
285              yts(:knon) = ftsol(ni(:knon), nsrf)
286              snow(:knon) = fsnow(ni(:knon), nsrf)
287              yqsurf(:knon) = fqsurf(ni(:knon), nsrf)
288              yalb(:knon) = falbe(ni(:knon), nsrf)
289              yrain_fall(:knon) = rain_fall(ni(:knon))
290              ysnow_fall(:knon) = snow_fall(ni(:knon))
291              yagesno(:knon) = agesno(ni(:knon), nsrf)
292              yrugos(:knon) = frugs(ni(:knon), nsrf)
293              yrugoro(:knon) = rugoro(ni(:knon))
294              radsol(:knon) = fsolsw(ni(:knon), nsrf) + fsollw(ni(:knon), nsrf)
295              ypaprs(:knon, klev + 1) = paprs(ni(:knon), klev + 1)
296              y_run_off_lic_0(:knon) = run_off_lic_0(ni(:knon))
297    
298              ! For continent, copy soil water content
299              IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
300    
301              ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
302    
303              DO k = 1, klev
304                 DO j = 1, knon
305                    i = ni(j)
306                    ypaprs(j, k) = paprs(i, k)
307                    ypplay(j, k) = play(i, k)
308                    ydelp(j, k) = delp(i, k)
309                    yu(j, k) = u_seri(i, k)
310                    yv(j, k) = v_seri(i, k)
311                    yt(j, k) = t_seri(i, k)
312                    yq(j, k) = q_seri(i, k)
313                 END DO
314              END DO
315    
316              ! Calculer les géopotentiels de chaque couche:
317    
318              zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
319                   + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
320    
321              DO k = 2, klev
322                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
323                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
324                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
325              ENDDO
326    
327              CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
328                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
329                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
330                   ycdragh(:knon))
331    
332              IF (iflag_pbl == 1) THEN
333                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
334                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
335              end IF
336    
337              IF (nsrf == is_oce) THEN
338                 ! On met un seuil pour ycdragm et ycdragh :
339                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
340                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
341              END IF
342    
343              IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf)
344              call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
345                   ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
346                   yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
347                   ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
348    
349              CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
350                   ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
351                   ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
352                   y_flux_u(:knon))
353              CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
354                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
355                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
356                   y_flux_v(:knon))
357    
358              CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), &
359                   mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), &
360                   yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), &
361                   yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), &
362                   ydelp(:knon, :), radsol(:knon), yalb(:knon), snow(:knon), &
363                   yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), &
364                   yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), &
365                   y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), &
366                   yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), &
367                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), &
368                   y_ffonte(:knon), y_run_off_lic_0(:knon), y_run_off_lic(:knon))
369    
370              ! calculer la longueur de rugosite sur ocean
371    
372              yrugm = 0.
373    
374              IF (nsrf == is_oce) THEN
375                 DO j = 1, knon
376                    yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
377                         / rg + 0.11 * 14E-6 &
378                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
379                    yrugm(j) = max(1.5E-05, yrugm(j))
380                 END DO
381              END IF
382    
383              DO k = 1, klev
384                 DO j = 1, knon
385                    y_d_t(j, k) = y_d_t(j, k) * ypctsrf(j)
386                    y_d_q(j, k) = y_d_q(j, k) * ypctsrf(j)
387                    y_d_u(j, k) = y_d_u(j, k) * ypctsrf(j)
388                    y_d_v(j, k) = y_d_v(j, k) * ypctsrf(j)
389                 END DO
390              END DO
391    
392              flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
393              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
394              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
395              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
396    
397              falbe(:, nsrf) = 0.
398              fsnow(:, nsrf) = 0.
399              fqsurf(:, nsrf) = 0.
400              frugs(:, nsrf) = 0.
401              DO j = 1, knon
402                 i = ni(j)
403                 d_ts(i, nsrf) = y_d_ts(j)
404                 falbe(i, nsrf) = yalb(j)
405                 fsnow(i, nsrf) = snow(j)
406                 fqsurf(i, nsrf) = yqsurf(j)
407                 frugs(i, nsrf) = yz0_new(j)
408                 fluxlat(i, nsrf) = yfluxlat(j)
409                 IF (nsrf == is_oce) THEN
410                    rugmer(i) = yrugm(j)
411                    frugs(i, nsrf) = yrugm(j)
412                 END IF
413                 agesno(i, nsrf) = yagesno(j)
414                 fqcalving(i, nsrf) = y_fqcalving(j)
415                 ffonte(i, nsrf) = y_ffonte(j)
416                 cdragh(i) = cdragh(i) + ycdragh(j) * ypctsrf(j)
417                 cdragm(i) = cdragm(i) + ycdragm(j) * ypctsrf(j)
418                 dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypctsrf(j)
419                 dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypctsrf(j)
420              END DO
421              IF (nsrf == is_ter) THEN
422                 qsol(ni(:knon)) = yqsol(:knon)
423              else IF (nsrf == is_lic) THEN
424                 DO j = 1, knon
425                    i = ni(j)
426                    run_off_lic_0(i) = y_run_off_lic_0(j)
427                    run_off_lic(i) = y_run_off_lic(j)
428                 END DO
429              END IF
430    
431              ftsoil(:, :, nsrf) = 0.
432              ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
433    
434              DO j = 1, knon
435                 i = ni(j)
436                 DO k = 1, klev
437                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
438                    d_q(i, k) = d_q(i, k) + y_d_q(j, k)
439                    d_u(i, k) = d_u(i, k) + y_d_u(j, k)
440                    d_v(i, k) = d_v(i, k) + y_d_v(j, k)
441                 END DO
442              END DO
443    
444              forall (k = 2:klev) coefh(ni(:knon), k) &
445                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypctsrf(:knon)
446    
447              ! Diagnostic temp\'erature, q \`a 2 m et u, v \`a 10 m:
448    
449              u1(:knon) = yu(:knon, 1) + y_d_u(:knon, 1)
450              v1(:knon) = yv(:knon, 1) + y_d_v(:knon, 1)
451              tair1(:knon) = yt(:knon, 1) + y_d_t(:knon, 1)
452    
453              IF (nsrf == is_oce) THEN
454                 rugo1(:knon) = frugs(ni(:knon), is_oce)
455              else
456                 rugo1(:knon) = yrugos(:knon)
457              END IF
458    
459              CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), &
460                   yq(:knon, 1) + y_d_q(:knon, 1), rd * tair1(:knon) &
461                   / (0.5 * (ypaprs(:knon, 1) + ypplay(:knon, 1))) &
462                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)), &
463                   yts(:knon) + y_d_ts(:knon), yqsurf(:knon), rugo1, &
464                   ypaprs(:knon, 1), ypplay(:knon, 1), yt2m, yq2m, yt10m, yq10m, &
465                   wind10m(:knon), ustar(:knon))
466    
467              DO j = 1, knon
468                 i = ni(j)
469                 t2m(i, nsrf) = yt2m(j)
470                 q2m(i, nsrf) = yq2m(j)
471    
472                 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
473                      / sqrt(u1(j)**2 + v1(j)**2)
474                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
475                      / sqrt(u1(j)**2 + v1(j)**2)
476              END DO
477    
478              CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
479                   y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
480                   yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
481                   ytherm, ylcl)
482    
483              DO j = 1, knon
484                 i = ni(j)
485                 pblh(i, nsrf) = ypblh(j)
486                 plcl(i, nsrf) = ylcl(j)
487                 capcl(i, nsrf) = ycapcl(j)
488                 oliqcl(i, nsrf) = yoliqcl(j)
489                 cteicl(i, nsrf) = ycteicl(j)
490                 pblt(i, nsrf) = ypblt(j)
491                 therm(i, nsrf) = ytherm(j)
492              END DO
493    
494              IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :)
495           else
496              fsnow(:, nsrf) = 0.
497           end IF if_knon
498        END DO loop_surface
499    
500        ! On utilise les nouvelles surfaces
501        frugs(:, is_oce) = rugmer
502        pctsrf(:, is_oce) = pctsrf_new_oce
503        pctsrf(:, is_sic) = pctsrf_new_sic
504    
505        CALL histwrite_phy("run_off_lic", run_off_lic)
506        ftsol = ftsol + d_ts ! update surface temperature
507        CALL histwrite_phy("dtsvdfo", d_ts(:, is_oce))
508        CALL histwrite_phy("dtsvdft", d_ts(:, is_ter))
509        CALL histwrite_phy("dtsvdfg", d_ts(:, is_lic))
510        CALL histwrite_phy("dtsvdfi", d_ts(:, is_sic))
511    
512    rugos(:, is_oce) = rugmer    END SUBROUTINE pbl_surface
   pctsrf = pctsrf_new  
513    
514  END SUBROUTINE clmain  end module pbl_surface_m

Legend:
Removed from v.37  
changed lines
  Added in v.343

  ViewVC Help
Powered by ViewVC 1.1.21