/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/Sources/phylmd/clmain.f revision 215 by guez, Tue Mar 28 12:46:28 2017 UTC trunk/phylmd/Interface_surf/pbl_surface.f revision 305 by guez, Tue Sep 11 11:08:38 2018 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, mu0, ftsol, cdmmax, &    SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, falbe, fluxlat, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &         rain_fall, snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &         oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
        trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)  
13    
14      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS)
16        ! Date: Aug. 18th, 1993
17      ! Objet : interface de couche limite (diffusion verticale)      ! Objet : interface de couche limite (diffusion verticale)
18    
19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
# Line 21  contains Line 21  contains
21      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! de sol.      ! de sol.
23    
24      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent      use cdrag_m, only: cdrag
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
25      use clqh_m, only: clqh      use clqh_m, only: clqh
26      use clvent_m, only: clvent      use clvent_m, only: clvent
27      use coefkz_m, only: coefkz      use coef_diff_turb_m, only: coef_diff_turb
28      use coefkzmin_m, only: coefkzmin      USE conf_gcm_m, ONLY: lmt_pas
     USE conf_gcm_m, ONLY: prt_level, lmt_pas  
29      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
30      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon
31      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
32      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
33        USE histwrite_phy_m, ONLY: histwrite_phy
34      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35      USE interfoce_lim_m, ONLY: interfoce_lim      USE interfoce_lim_m, ONLY: interfoce_lim
36        use phyetat0_m, only: zmasq
37      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
38      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg
39      use time_phylmdz, only: itap      use time_phylmdz, only: itap
     use ustarhb_m, only: ustarhb  
     use vdif_kcay_m, only: vdif_kcay  
     use yamada4_m, only: yamada4  
   
     REAL, INTENT(IN):: dtime ! interval du temps (secondes)  
40    
41      REAL, INTENT(inout):: pctsrf(klon, nbsrf)      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
42      ! tableau des pourcentages de surface de chaque maille      ! tableau des pourcentages de surface de chaque maille
43    
44      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
45      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
46      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
47      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
48      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
49      REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
50      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
     REAL, INTENT(IN):: ksta, ksta_ter  
     LOGICAL, INTENT(IN):: ok_kzmin  
51    
52      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
53      ! soil temperature of surface fraction      ! soil temperature of surface fraction
54    
55      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
56      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
57    
58      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
59      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
60      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
61      REAL qsurf(klon, nbsrf)      REAL, INTENT(inout):: qsurf(klon, nbsrf)
     REAL evap(klon, nbsrf)  
62      REAL, intent(inout):: falbe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
63      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
64    
65      REAL, intent(in):: rain_fall(klon)      REAL, intent(in):: rain_fall(klon)
66      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
67    
68      REAL, intent(in):: snow_f(klon)      REAL, intent(in):: snow_fall(klon)
69      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
70    
71      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
72      REAL, intent(in):: fder(klon)      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
     REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)  
73      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
74      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
75    
76      REAL d_t(klon, klev), d_q(klon, klev)      REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
77      ! d_t------output-R- le changement pour "t"      ! changement pour t et q
     ! d_q------output-R- le changement pour "q"  
78    
79      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
80      ! changement pour "u" et "v"      ! changement pour "u" et "v"
81    
82      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
83    
84      REAL, intent(out):: flux_t(klon, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
85      ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers      ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive
86      ! le bas) à la surface      ! vers le bas) à la surface
87    
88      REAL, intent(out):: flux_q(klon, nbsrf)      REAL, intent(out):: flux_q(klon, nbsrf)
89      ! flux de vapeur d'eau (kg/m2/s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
90    
91      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
92      ! tension du vent à la surface, en Pa      ! tension du vent (flux turbulent de vent) à la surface, en Pa
93    
94      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
95      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
96    
97        ! Ocean slab:
98        REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible
99        REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent
100    
101        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
102        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
103        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
104        ! ce champ sur les quatre sous-surfaces du mod\`ele.
105    
106      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
107      ! dflux_t derive du flux sensible  
108      ! dflux_q derive du flux latent      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
109      ! IM "slab" ocean      ! composantes du vent \`a 10m sans spirale d'Ekman
110    
111      REAL, intent(out):: ycoefh(klon, klev)      ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
112      REAL, intent(out):: zu1(klon)      ! Comme les autres diagnostics on cumule dans physiq ce qui permet
113      REAL zv1(klon)      ! de sortir les grandeurs par sous-surface.
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm  
     ! (Comme les autres diagnostics on cumule dans physiq ce qui  
     ! permet de sortir les grandeurs par sous-surface)  
114      REAL pblh(klon, nbsrf) ! height of planetary boundary layer      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
115      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
116      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
117      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
118      REAL pblt(klon, nbsrf)      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
     ! pblT------- T au nveau HCL  
119      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
     REAL trmb1(klon, nbsrf)  
     ! trmb1-------deep_cape  
     REAL trmb2(klon, nbsrf)  
     ! trmb2--------inhibition  
     REAL trmb3(klon, nbsrf)  
     ! trmb3-------Point Omega  
120      REAL plcl(klon, nbsrf)      REAL plcl(klon, nbsrf)
     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
     ! ffonte----Flux thermique utilise pour fondre la neige  
     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
     !           hauteur de neige, en kg/m2/s  
     REAL run_off_lic_0(klon)  
121    
122      ! Local:      REAL, intent(out):: fqcalving(klon, nbsrf)
123        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
124        ! hauteur de neige, en kg / m2 / s
125    
126      LOGICAL:: firstcal = .true.      real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige
127        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
128    
129        ! Local:
130    
131      ! la nouvelle repartition des surfaces sortie de l'interface      ! la nouvelle repartition des surfaces sortie de l'interface
132      REAL, save:: pctsrf_new_oce(klon)      REAL, save:: pctsrf_new_oce(klon)
133      REAL, save:: pctsrf_new_sic(klon)      REAL, save:: pctsrf_new_sic(klon)
134    
135      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
136      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon), y_run_off_lic(klon)
137        REAL run_off_lic(klon) ! ruissellement total
138      REAL rugmer(klon)      REAL rugmer(klon)
139      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
140      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), ypct(klon), yz0_new(klon)
141        real yrugos(klon) ! longueur de rugosite (en m)
142      REAL yalb(klon)      REAL yalb(klon)
   
     REAL yu1(klon), yv1(klon)  
     ! On ajoute en output yu1 et yv1 qui sont les vents dans  
     ! la premi\`ere couche.  
       
143      REAL snow(klon), yqsurf(klon), yagesno(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
144        real yqsol(klon) ! column-density of water in soil, in kg m-2
145      real yqsol(klon)      REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down
146      ! column-density of water in soil, in kg m-2      REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
147      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
148      REAL yfluxlat(klon)      REAL yfluxlat(klon)
149      REAL y_d_ts(klon)      REAL y_d_ts(klon)
# Line 180  contains Line 152  contains
152      REAL y_flux_t(klon), y_flux_q(klon)      REAL y_flux_t(klon), y_flux_q(klon)
153      REAL y_flux_u(klon), y_flux_v(klon)      REAL y_flux_u(klon), y_flux_v(klon)
154      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
155      REAL coefh(klon, klev), coefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
156        real ycdragh(klon), ycdragm(klon)
157      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
158      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
159      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
160        REAL yq2(klon, klev + 1)
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
161      REAL delp(klon, klev)      REAL delp(klon, klev)
162      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
163      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
164    
165      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
166      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
167      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
168    
169      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation      REAL yt2m(klon), yq2m(klon), wind10m(klon)
170        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
171    
172      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
173      REAL ypblh(klon)      REAL ypblh(klon)
# Line 216  contains Line 177  contains
177      REAL ycteicl(klon)      REAL ycteicl(klon)
178      REAL ypblt(klon)      REAL ypblt(klon)
179      REAL ytherm(klon)      REAL ytherm(klon)
180      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
     REAL uzon(klon), vmer(klon)  
181      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
182      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
183        REAL zgeo1(klon)
     REAL qairsol(klon), zgeo1(klon)  
184      REAL rugo1(klon)      REAL rugo1(klon)
185        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
186    
187      !------------------------------------------------------------      !------------------------------------------------------------
188    
# Line 236  contains Line 190  contains
190    
191      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
192         DO i = 1, klon         DO i = 1, klon
193            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
194         END DO         END DO
195      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
196    
197      ! Initialization:      ! Initialization:
198      rugmer = 0.      rugmer = 0.
# Line 252  contains Line 200  contains
200      cdragm = 0.      cdragm = 0.
201      dflux_t = 0.      dflux_t = 0.
202      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
203      ypct = 0.      ypct = 0.
     yts = 0.  
     yqsurf = 0.  
     yrain_f = 0.  
     ysnow_f = 0.  
     yfder = 0.  
204      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
205      ypaprs = 0.      ypaprs = 0.
206      ypplay = 0.      ypplay = 0.
207      ydelp = 0.      ydelp = 0.
     yu = 0.  
     yv = 0.  
     yt = 0.  
     yq = 0.  
     y_dflux_t = 0.  
     y_dflux_q = 0.  
208      yrugoro = 0.      yrugoro = 0.
209      d_ts = 0.      d_ts = 0.
210      flux_t = 0.      flux_t = 0.
# Line 284  contains Line 216  contains
216      d_q = 0.      d_q = 0.
217      d_u = 0.      d_u = 0.
218      d_v = 0.      d_v = 0.
219      ycoefh = 0.      coefh = 0.
220        fqcalving = 0.
221        run_off_lic = 0.
222    
223      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
224      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
225      ! (\`a affiner)      ! (\`a affiner).
226    
227      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
228      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
# Line 297  contains Line 231  contains
231    
232      ! Tester si c'est le moment de lire le fichier:      ! Tester si c'est le moment de lire le fichier:
233      if (mod(itap - 1, lmt_pas) == 0) then      if (mod(itap - 1, lmt_pas) == 0) then
234         CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)         CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
235      endif      endif
236    
237      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
238    
239      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
240         ! Chercher les indices :         ! Define ni and knon:
241          
242         ni = 0         ni = 0
243         knon = 0         knon = 0
244    
245         DO i = 1, klon         DO i = 1, klon
246            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
247            ! "potentielles"            ! "potentielles"
# Line 323  contains Line 259  contains
259               snow(j) = fsnow(i, nsrf)               snow(j) = fsnow(i, nsrf)
260               yqsurf(j) = qsurf(i, nsrf)               yqsurf(j) = qsurf(i, nsrf)
261               yalb(j) = falbe(i, nsrf)               yalb(j) = falbe(i, nsrf)
262               yrain_f(j) = rain_fall(i)               yrain_fall(j) = rain_fall(i)
263               ysnow_f(j) = snow_f(i)               ysnow_fall(j) = snow_fall(i)
264               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
265               yfder(j) = fder(i)               yrugos(j) = frugs(i, nsrf)
              yrugos(j) = rugos(i, nsrf)  
266               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
267               yu1(j) = u1lay(i)               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
268               yv1(j) = v1lay(i)               ypaprs(j, klev + 1) = paprs(i, klev + 1)
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
269               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
270            END DO            END DO
271    
272            ! For continent, copy soil water content            ! For continent, copy soil water content
273            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
274    
275            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
276    
# Line 358  contains Line 287  contains
287               END DO               END DO
288            END DO            END DO
289    
290            ! calculer Cdrag et les coefficients d'echange            ! Calculer les géopotentiels de chaque couche:
           CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, &  
                yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))  
           IF (iflag_pbl == 1) THEN  
              CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
              coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))  
              coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
           END IF  
291    
292            ! on met un seuil pour coefm et coefh            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
293            IF (nsrf == is_oce) THEN                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
              coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)  
              coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)  
           END IF  
294    
295            IF (ok_kzmin) THEN            DO k = 2, klev
296               ! Calcul d'une diffusion minimale pour les conditions tres stables               zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
297               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &                    * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
298                    coefm(:knon, 1), ycoefm0, ycoefh0)                    * (ypplay(:knon, k - 1) - ypplay(:knon, k))
299               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))            ENDDO
300               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))  
301            END IF            CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
302                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
303                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
304                   ycdragh(:knon))
305    
306            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl == 1) THEN
307               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et               ycdragm(:knon) = max(ycdragm(:knon), 0.)
308               ! Fr\'ed\'eric Hourdin               ycdragh(:knon) = max(ycdragh(:knon), 0.)
309               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &            end IF
                   + ypplay(:knon, 1))) &  
                   * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg  
              DO k = 2, klev  
                 yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                      + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                      / ypaprs(1:knon, k) &  
                      * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
              END DO  
              DO k = 1, klev  
                 yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                      / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
              END DO  
              yzlev(1:knon, 1) = 0.  
              yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &  
                   - yzlay(:knon, klev - 1)  
              DO k = 2, klev  
                 yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
              END DO  
              DO k = 1, klev + 1  
                 DO j = 1, knon  
                    i = ni(j)  
                    yq2(j, k) = q2(i, k, nsrf)  
                 END DO  
              END DO  
   
              CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)  
              IF (prt_level > 9) PRINT *, 'USTAR = ', yustar  
   
              ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange  
   
              IF (iflag_pbl >= 11) THEN  
                 CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &  
                      yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &  
                      iflag_pbl)  
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
310    
311               coefm(:knon, 2:) = ykmm(:knon, 2:klev)            ! on met un seuil pour ycdragm et ycdragh
312               coefh(:knon, 2:) = ykmn(:knon, 2:klev)            IF (nsrf == is_oce) THEN
313                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
314                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
315            END IF            END IF
316    
317            ! calculer la diffusion des vitesses "u" et "v"            IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf)
318            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &            call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
319                 ypplay, ydelp, y_d_u, y_flux_u(:knon))                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
320            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &                 yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
321                 ypplay, ydelp, y_d_v, y_flux_v(:knon))                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
322              
323            ! calculer la diffusion de "q" et de "h"            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
324            CALL clqh(dtime, jour, firstcal, nsrf, ni(:knon), ytsoil(:knon, :), &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
325                 yqsol, mu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
326                 yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), &                 y_flux_u(:knon))
327                 snow(:knon), yqsurf, yrain_f, ysnow_f, yfder, yfluxlat(:knon), &            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
328                 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
329                 yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, &                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
330                 y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)                 y_flux_v(:knon))
331    
332              CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), &
333                   mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), &
334                   yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), &
335                   yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), &
336                   ydelp(:knon, :), yrads(:knon), yalb(:knon), snow(:knon), &
337                   yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), &
338                   yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), &
339                   y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), &
340                   yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), &
341                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), &
342                   y_ffonte(:knon), y_run_off_lic_0(:knon), y_run_off_lic(:knon))
343    
344            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
345    
346            yrugm = 0.            yrugm = 0.
347    
348            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
349               DO j = 1, knon               DO j = 1, knon
350                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
351                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
352                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
353                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
354               END DO               END DO
355            END IF            END IF
           DO j = 1, knon  
              y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
              y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
           END DO  
356    
357            DO k = 1, klev            DO k = 1, klev
358               DO j = 1, knon               DO j = 1, knon
359                  i = ni(j)                  i = ni(j)
360                  coefh(j, k) = coefh(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
361                  coefm(j, k) = coefm(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
362                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
363                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
                 y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
                 y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
364               END DO               END DO
365            END DO            END DO
366    
# Line 476  contains Line 369  contains
369            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
370            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
371    
           evap(:, nsrf) = -flux_q(:, nsrf)  
   
372            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
373            fsnow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
374            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
375            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
376            DO j = 1, knon            DO j = 1, knon
377               i = ni(j)               i = ni(j)
378               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
379               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
380               fsnow(i, nsrf) = snow(j)               fsnow(i, nsrf) = snow(j)
381               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
382               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
383               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
384               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
385                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
386                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
387               END IF               END IF
388               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
389               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
390               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
391               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
392               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
393               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypct(j)
394               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypct(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
395            END DO            END DO
396            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
397               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 510  contains Line 399  contains
399               DO j = 1, knon               DO j = 1, knon
400                  i = ni(j)                  i = ni(j)
401                  run_off_lic_0(i) = y_run_off_lic_0(j)                  run_off_lic_0(i) = y_run_off_lic_0(j)
402                    run_off_lic(i) = y_run_off_lic(j)
403               END DO               END DO
404            END IF            END IF
405    
# Line 523  contains Line 413  contains
413                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
414                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
415                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
                 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)  
416               END DO               END DO
417            END DO            END DO
418    
419              forall (k = 2:klev) coefh(ni(:knon), k) &
420                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
421    
422            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
423    
424            DO j = 1, knon            DO j = 1, knon
425               i = ni(j)               i = ni(j)
426               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
427               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
428               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
429               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
430               zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
431                    1)))*(ypaprs(j, 1)-ypplay(j, 1))                    1))) * (ypaprs(j, 1)-ypplay(j, 1))
432               tairsol(j) = yts(j) + y_d_ts(j)               tairsol(j) = yts(j) + y_d_ts(j)
433               rugo1(j) = yrugos(j)               rugo1(j) = yrugos(j)
434               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
435                  rugo1(j) = rugos(i, nsrf)                  rugo1(j) = frugs(i, nsrf)
436               END IF               END IF
437               psfce(j) = ypaprs(j, 1)               psfce(j) = ypaprs(j, 1)
438               patm(j) = ypplay(j, 1)               patm(j) = ypplay(j, 1)
   
              qairsol(j) = yqsurf(j)  
439            END DO            END DO
440    
441            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
442                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 zgeo1, tairsol, yqsurf(:knon), rugo1, psfce, patm, yt2m, yq2m, &
443                 yt10m, yq10m, yu10m, yustar)                 yt10m, yq10m, wind10m(:knon), ustar(:knon))
444    
445            DO j = 1, knon            DO j = 1, knon
446               i = ni(j)               i = ni(j)
447               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
448               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
449    
450               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
451               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
452               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
453                      / sqrt(u1(j)**2 + v1(j)**2)
454            END DO            END DO
455    
456            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
457                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
458                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
459                   ytherm, ylcl)
460    
461            DO j = 1, knon            DO j = 1, knon
462               i = ni(j)               i = ni(j)
# Line 575  contains Line 467  contains
467               cteicl(i, nsrf) = ycteicl(j)               cteicl(i, nsrf) = ycteicl(j)
468               pblt(i, nsrf) = ypblt(j)               pblt(i, nsrf) = ypblt(j)
469               therm(i, nsrf) = ytherm(j)               therm(i, nsrf) = ytherm(j)
              trmb1(i, nsrf) = ytrmb1(j)  
              trmb2(i, nsrf) = ytrmb2(j)  
              trmb3(i, nsrf) = ytrmb3(j)  
470            END DO            END DO
471    
472            DO j = 1, knon            IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :)
              DO k = 1, klev + 1  
                 i = ni(j)  
                 q2(i, k, nsrf) = yq2(j, k)  
              END DO  
           END DO  
473         else         else
474            fsnow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
475         end IF if_knon         end IF if_knon
476      END DO loop_surface      END DO loop_surface
477    
478      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
479      rugos(:, is_oce) = rugmer      frugs(:, is_oce) = rugmer
480      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
481      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
482    
483      firstcal = .false.      CALL histwrite_phy("run_off_lic", run_off_lic)
484    
485    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
486    
487  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.215  
changed lines
  Added in v.305

  ViewVC Help
Powered by ViewVC 1.1.21