--- trunk/Sources/phylmd/clmain.f 2017/11/09 12:37:48 235 +++ trunk/Sources/phylmd/clmain.f 2017/11/13 11:29:18 240 @@ -106,7 +106,7 @@ ! dflux_q derive du flux latent ! IM "slab" ocean - REAL, intent(out):: ycoefh(klon, klev) + REAL, intent(out):: ycoefh(:, :) ! (klon, klev) ! Pour pouvoir extraire les coefficients d'\'echange, le champ ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de ! ce champ sur les quatre sous-surfaces du mod\`ele. @@ -164,14 +164,14 @@ REAL y_flux_t(klon), y_flux_q(klon) REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) - REAL coefh(klon, klev), coefm(klon, klev) + REAL coefh(klon, 2:klev), coefm(klon, 2:klev) + real ycdragh(klon), ycdragm(klon) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev) - REAL ycoefm0(klon, klev), ycoefh0(klon, klev) + REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev) REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev) REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1) - REAL ykmq(klon, klev + 1) REAL yq2(klon, klev + 1) REAL delp(klon, klev) INTEGER i, k, nsrf @@ -312,28 +312,29 @@ ! calculer Cdrag et les coefficients d'echange CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), & - yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, 2:), & - coefh(:knon, 2:), coefm(:knon, 1), coefh(:knon, 1)) + yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), & + coefh(:knon, :), ycdragm(:knon), ycdragh(:knon)) IF (iflag_pbl == 1) THEN - CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, 2:), & - ycoefh0(:knon, 2:)) - ycoefm0(:knon, 1) = 0. - ycoefh0(:knon, 1) = 0. + CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), & + ycoefh0(:knon, :)) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + ycdragm(:knon) = max(ycdragm(:knon), 0.) + ycdragh(:knon) = max(ycdragh(:knon), 0.) END IF - ! on met un seuil pour coefm et coefh + ! on met un seuil pour ycdragm et ycdragh IF (nsrf == is_oce) THEN - coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax) - coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax) + ycdragm(:knon) = min(ycdragm(:knon), cdmmax) + ycdragh(:knon) = min(ycdragh(:knon), cdhmax) END IF IF (ok_kzmin) THEN ! Calcul d'une diffusion minimale pour les conditions tres stables CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, & - coefm(:knon, 1), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:)) + ycdragm(:knon), ycoefh0(:knon, :)) + ycoefm0(:knon, :) = ycoefh0(:knon, :) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) END IF @@ -372,41 +373,41 @@ END DO END DO - ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), coefm(:knon, 1)) + ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon)) CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), & - yu(:knon, :), yv(:knon, :), yteta(:knon, :), & - coefm(:knon, 1), yq2(:knon, :), ykmm(:knon, :), & - ykmn(:knon, :), ykmq(:knon, :), ustar(:knon)) - coefm(:knon, 2:) = ykmm(:knon, 2:klev) - coefh(:knon, 2:) = ykmn(:knon, 2:klev) + yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), & + ykmm(:knon, :), ykmn(:knon, :), ustar(:knon)) + coefm(:knon, :) = ykmm(:knon, 2:klev) + coefh(:knon, :) = ykmn(:knon, 2:klev) END IF - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), & - coefm(:knon, 1), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & y_flux_u(:knon)) - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), & - coefm(:knon, 1), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), & y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & - yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), yt, yq, & - yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), & - snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), & - y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0) + yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), & + yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), & + yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, & + yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & + y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, & + y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. IF (nsrf == is_oce) THEN DO j = 1, knon - yrugm(j) = 0.018 * coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2) & + yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) & / rg + 0.11 * 14E-6 & - / sqrt(coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2)) + / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2)) yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF @@ -415,11 +416,21 @@ y_dflux_q(j) = y_dflux_q(j) * ypct(j) END DO - DO k = 1, klev + DO k = 2, klev DO j = 1, knon i = ni(j) coefh(j, k) = coefh(j, k) * ypct(j) coefm(j, k) = coefm(j, k) * ypct(j) + END DO + END DO + DO j = 1, knon + i = ni(j) + ycdragh(j) = ycdragh(j) * ypct(j) + ycdragm(j) = ycdragm(j) * ypct(j) + END DO + DO k = 1, klev + DO j = 1, knon + i = ni(j) y_d_t(j, k) = y_d_t(j, k) * ypct(j) y_d_q(j, k) = y_d_q(j, k) * ypct(j) y_d_u(j, k) = y_d_u(j, k) * ypct(j) @@ -453,8 +464,8 @@ agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + coefh(j, 1) - cdragm(i) = cdragm(i) + coefm(j, 1) + cdragh(i) = cdragh(i) + ycdragh(j) + cdragm(i) = cdragm(i) + ycdragm(j) dflux_t(i) = dflux_t(i) + y_dflux_t(j) dflux_q(i) = dflux_q(i) + y_dflux_q(j) END DO @@ -477,10 +488,21 @@ d_q(i, k) = d_q(i, k) + y_d_q(j, k) d_u(i, k) = d_u(i, k) + y_d_u(j, k) d_v(i, k) = d_v(i, k) + y_d_v(j, k) + END DO + END DO + + DO j = 1, knon + i = ni(j) + DO k = 2, klev ycoefh(i, k) = ycoefh(i, k) + coefh(j, k) END DO END DO + DO j = 1, knon + i = ni(j) + ycoefh(i, 1) = ycoefh(i, 1) + ycdragh(j) + END DO + ! diagnostic t, q a 2m et u, v a 10m DO j = 1, knon