/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 47 by guez, Fri Jul 1 15:00:48 2011 UTC trunk/phylmd/Interface_surf/pbl_surface.f revision 301 by guez, Thu Aug 2 17:23:07 2018 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&    SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, &
9         soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&         rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&         oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
13         d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
14         dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15         capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&      ! Author: Z. X. Li (LMD/CNRS), date: 1993 Aug. 18th
16         fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)      ! Objet : interface de couche limite (diffusion verticale)
17    
18      ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
19      ! Author: Z.X. Li (LMD/CNRS), date: 1993/08/18      ! de la couche limite pour les traceurs se fait avec "cltrac" et
20      ! Objet : interface de "couche limite" (diffusion verticale)      ! ne tient pas compte de la diff\'erentiation des sous-fractions
21        ! de sol.
22      ! Tout ce qui a trait aux traceurs est dans "phytrac" maintenant.  
23      ! Pour l'instant le calcul de la couche limite pour les traceurs      use cdrag_m, only: cdrag
24      ! se fait avec "cltrac" et ne tient pas compte de la différentiation      use clqh_m, only: clqh
25      ! des sous-fractions de sol.      use clvent_m, only: clvent
26        use coef_diff_turb_m, only: coef_diff_turb
27      ! Pour pouvoir extraire les coefficients d'échanges et le vent      USE conf_gcm_m, ONLY: lmt_pas
28      ! dans la première couche, trois champs supplémentaires ont été      USE conf_phys_m, ONLY: iflag_pbl
29      ! créés : "zcoefh", "zu1" et "zv1". Pour l'instant nous avons      USE dimphy, ONLY: klev, klon
30      ! moyenné les valeurs de ces trois champs sur les 4 sous-surfaces      USE dimsoil, ONLY: nsoilmx
     ! du modèle. Dans l'avenir, si les informations des sous-surfaces  
     ! doivent être prises en compte, il faudra sortir ces mêmes champs  
     ! en leur ajoutant une dimension, c'est-à-dire "nbsrf" (nombre de  
     ! sous-surfaces).  
   
     ! Arguments:  
     ! dtime----input-R- interval du temps (secondes)  
     ! itap-----input-I- numero du pas de temps  
     ! date0----input-R- jour initial  
     ! t--------input-R- temperature (K)  
     ! q--------input-R- vapeur d'eau (kg/kg)  
     ! u--------input-R- vitesse u  
     ! v--------input-R- vitesse v  
     ! ts-------input-R- temperature du sol (en Kelvin)  
     ! paprs----input-R- pression a intercouche (Pa)  
     ! pplay----input-R- pression au milieu de couche (Pa)  
     ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2  
     ! rlat-----input-R- latitude en degree  
     ! rugos----input-R- longeur de rugosite (en m)  
     ! cufi-----input-R- resolution des mailles en x (m)  
     ! cvfi-----input-R- resolution des mailles en y (m)  
   
     ! d_t------output-R- le changement pour "t"  
     ! d_q------output-R- le changement pour "q"  
     ! d_u------output-R- le changement pour "u"  
     ! d_v------output-R- le changement pour "v"  
     ! d_ts-----output-R- le changement pour "ts"  
     ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
     !                    (orientation positive vers le bas)  
     ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
     ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
     ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
     ! dflux_t derive du flux sensible  
     ! dflux_q derive du flux latent  
     !IM "slab" ocean  
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   
     ! tslab-in/output-R temperature du slab ocean (en Kelvin)  
     ! uniqmnt pour slab  
   
     ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
     !cc  
     ! ffonte----Flux thermique utilise pour fondre la neige  
     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
     !           hauteur de neige, en kg/m2/s  
     ! on rajoute en output yu1 et yv1 qui sont les vents dans  
     ! la premiere couche  
     ! ces 4 variables sont maintenant traites dans phytrac  
     ! itr--------input-I- nombre de traceurs  
     ! tr---------input-R- q. de traceurs  
     ! flux_surf--input-R- flux de traceurs a la surface  
     ! d_tr-------output-R tendance de traceurs  
     !IM cf. AM : PBL  
     ! trmb1-------deep_cape  
     ! trmb2--------inhibition  
     ! trmb3-------Point Omega  
     ! Cape(klon)-------Cape du thermique  
     ! EauLiq(klon)-------Eau liqu integr du thermique  
     ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
     ! lcl------- Niveau de condensation  
     ! pblh------- HCL  
     ! pblT------- T au nveau HCL  
   
     use calendar, ONLY : ymds2ju  
     use coefkz_m, only: coefkz  
     use coefkzmin_m, only: coefkzmin  
     USE conf_phys_m, ONLY : iflag_pbl  
     USE dimens_m, ONLY : iim, jjm  
     USE dimphy, ONLY : klev, klon, zmasq  
     USE dimsoil, ONLY : nsoilmx  
     USE dynetat0_m, ONLY : day_ini  
     USE gath_cpl, ONLY : gath2cpl  
31      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
32      USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync      USE histwrite_phy_m, ONLY: histwrite_phy
33      use histwrite_m, only: histwrite      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
34      USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE interfoce_lim_m, ONLY: interfoce_lim
35      USE iniprint, ONLY : prt_level      use phyetat0_m, only: zmasq
36      USE suphec_m, ONLY : rd, rg, rkappa      use stdlevvar_m, only: stdlevvar
37      USE temps, ONLY : annee_ref, itau_phy      USE suphec_m, ONLY: rd, rg
38      use yamada4_m, only: yamada4      use time_phylmdz, only: itap
39    
40      REAL, INTENT (IN) :: dtime      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
41      REAL date0      ! tableau des pourcentages de surface de chaque maille
42      INTEGER, INTENT (IN) :: itap  
43      REAL t(klon, klev), q(klon, klev)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
44      REAL, INTENT (IN):: u(klon, klev), v(klon, klev)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
45      REAL, INTENT (IN):: paprs(klon, klev+1)      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
46      REAL, INTENT (IN):: pplay(klon, klev)      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
47      REAL, INTENT (IN):: rlon(klon), rlat(klon)      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
48      REAL cufi(klon), cvfi(klon)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
49      REAL d_t(klon, klev), d_q(klon, klev)      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
50      REAL d_u(klon, klev), d_v(klon, klev)  
51      REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
52      REAL dflux_t(klon), dflux_q(klon)      ! soil temperature of surface fraction
53      !IM "slab" ocean  
54      REAL flux_o(klon), flux_g(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
55      REAL y_flux_o(klon), y_flux_g(klon)      ! column-density of water in soil, in kg m-2
56      REAL tslab(klon), ytslab(klon)  
57      REAL seaice(klon), y_seaice(klon)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
58      REAL y_fqcalving(klon), y_ffonte(klon)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
59      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
     REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
   
     REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
     REAL rugmer(klon), agesno(klon, nbsrf)  
     REAL, INTENT (IN) :: rugoro(klon)  
     REAL cdragh(klon), cdragm(klon)  
     ! jour de l'annee en cours                  
     INTEGER jour  
     REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
     ! taux CO2 atmosphere                      
     REAL co2_ppm  
     LOGICAL, INTENT (IN) :: debut  
     LOGICAL, INTENT (IN) :: lafin  
     LOGICAL ok_veget  
     CHARACTER (len=*), INTENT (IN) :: ocean  
     INTEGER npas, nexca  
   
     REAL pctsrf(klon, nbsrf)  
     REAL ts(klon, nbsrf)  
     REAL d_ts(klon, nbsrf)  
     REAL snow(klon, nbsrf)  
60      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
61      REAL evap(klon, nbsrf)      REAL evap(klon, nbsrf)
62      REAL albe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
63      REAL alblw(klon, nbsrf)      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
64    
65      REAL fluxlat(klon, nbsrf)      REAL, intent(in):: rain_fall(klon)
66        ! liquid water mass flux (kg / m2 / s), positive down
67    
68      REAL rain_f(klon), snow_f(klon)      REAL, intent(in):: snow_f(klon)
69      REAL fder(klon)      ! solid water mass flux (kg / m2 / s), positive down
70    
71      REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)      REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
72      REAL rugos(klon, nbsrf)      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
73      ! la nouvelle repartition des surfaces sortie de l'interface      real agesno(klon, nbsrf)
74      REAL pctsrf_new(klon, nbsrf)      REAL, INTENT(IN):: rugoro(klon)
75    
76      REAL zcoefh(klon, klev)      REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev)
77      REAL zu1(klon)      ! changement pour t et q
     REAL zv1(klon)  
78    
79      !$$$ PB ajout pour soil      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
80      LOGICAL, INTENT (IN) :: soil_model      ! changement pour "u" et "v"
     !IM ajout seuils cdrm, cdrh  
     REAL cdmmax, cdhmax  
81    
82      REAL ksta, ksta_ter      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
     LOGICAL ok_kzmin  
83    
84      REAL ftsoil(klon, nsoilmx, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
85      REAL ytsoil(klon, nsoilmx)      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
86      REAL qsol(klon)      ! le bas) à la surface
87    
88        REAL, intent(out):: flux_q(klon, nbsrf)
89        ! flux de vapeur d'eau (kg / m2 / s) à la surface
90    
91        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
92        ! tension du vent (flux turbulent de vent) à la surface, en Pa
93    
94        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
95        real q2(klon, klev + 1, nbsrf)
96    
97        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
98        ! dflux_t derive du flux sensible
99        ! dflux_q derive du flux latent
100        ! IM "slab" ocean
101    
102        REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
103        ! Pour pouvoir extraire les coefficients d'\'echange, le champ
104        ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
105        ! ce champ sur les quatre sous-surfaces du mod\`ele.
106    
107        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
108    
109        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
110        ! composantes du vent \`a 10m sans spirale d'Ekman
111    
112        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
113        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
114        ! de sortir les grandeurs par sous-surface.
115        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
116        REAL capcl(klon, nbsrf)
117        REAL oliqcl(klon, nbsrf)
118        REAL cteicl(klon, nbsrf)
119        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
120        REAL therm(klon, nbsrf)
121        REAL plcl(klon, nbsrf)
122    
123      EXTERNAL clqh, clvent, calbeta, cltrac      REAL, intent(out):: fqcalving(klon, nbsrf)
124        ! flux d'eau "perdue" par la surface et necessaire pour limiter la
125        ! hauteur de neige, en kg / m2 / s
126    
127      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige
128        REAL, intent(inout):: run_off_lic_0(:) ! (klon)
129    
130        ! Local:
131    
132        ! la nouvelle repartition des surfaces sortie de l'interface
133        REAL, save:: pctsrf_new_oce(klon)
134        REAL, save:: pctsrf_new_sic(klon)
135    
136        REAL y_fqcalving(klon), y_ffonte(klon)
137        real y_run_off_lic_0(klon), y_run_off_lic(klon)
138        REAL run_off_lic(klon) ! ruissellement total
139        REAL rugmer(klon)
140        REAL ytsoil(klon, nsoilmx)
141        REAL yts(klon), ypct(klon), yz0_new(klon)
142        real yrugos(klon) ! longueur de rugosite (en m)
143      REAL yalb(klon)      REAL yalb(klon)
144      REAL yalblw(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
145      REAL yu1(klon), yv1(klon)      real yqsol(klon) ! column-density of water in soil, in kg m-2
146      REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
147      REAL yrain_f(klon), ysnow_f(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
     REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
     REAL yfder(klon), ytaux(klon), ytauy(klon)  
148      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
149      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
150      REAL y_d_ts(klon)      REAL y_d_ts(klon)
151      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
152      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
153      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
154      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
155      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
156      REAL ycoefh(klon, klev), ycoefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
157        real ycdragh(klon), ycdragm(klon)
158      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
159      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
160      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
161        REAL yq2(klon, klev + 1)
     LOGICAL ok_nonloc  
     PARAMETER (ok_nonloc=.FALSE.)  
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
162      REAL delp(klon, klev)      REAL delp(klon, klev)
163      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
164      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
165    
166      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
167      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
168      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
169    
170      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL yt2m(klon), yq2m(klon), wind10m(klon)
171        REAL ustar(klon)
     ! maf pour sorties IOISPL en cas de debugagage  
   
     CHARACTER (80) cldebug  
     SAVE cldebug  
     CHARACTER (8) cl_surf(nbsrf)  
     SAVE cl_surf  
     INTEGER nhoridbg, nidbg  
     SAVE nhoridbg, nidbg  
     INTEGER ndexbg(iim*(jjm+1))  
     REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
     REAL tabindx(klon)  
     REAL debugtab(iim, jjm+1)  
     LOGICAL first_appel  
     SAVE first_appel  
     DATA first_appel/ .TRUE./  
     LOGICAL :: debugindex = .FALSE.  
     INTEGER idayref  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
172    
173      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
     !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
     ! physiq ce qui permet de sortir les grdeurs par sous surface)  
     REAL pblh(klon, nbsrf)  
     REAL plcl(klon, nbsrf)  
     REAL capcl(klon, nbsrf)  
     REAL oliqcl(klon, nbsrf)  
     REAL cteicl(klon, nbsrf)  
     REAL pblt(klon, nbsrf)  
     REAL therm(klon, nbsrf)  
     REAL trmb1(klon, nbsrf)  
     REAL trmb2(klon, nbsrf)  
     REAL trmb3(klon, nbsrf)  
174      REAL ypblh(klon)      REAL ypblh(klon)
175      REAL ylcl(klon)      REAL ylcl(klon)
176      REAL ycapcl(klon)      REAL ycapcl(klon)
# Line 277  contains Line 178  contains
178      REAL ycteicl(klon)      REAL ycteicl(klon)
179      REAL ypblt(klon)      REAL ypblt(klon)
180      REAL ytherm(klon)      REAL ytherm(klon)
181      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
     REAL y_cd_h(klon), y_cd_m(klon)  
     REAL uzon(klon), vmer(klon)  
182      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
183      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
184    
185      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
186      REAL rugo1(klon)      REAL rugo1(klon)
187        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
     REAL zt, zqs, zdelta, zcor  
     REAL t_coup  
     PARAMETER (t_coup=273.15)  
   
     CHARACTER (len=20) :: modname = 'clmain'  
188    
189      !------------------------------------------------------------      !------------------------------------------------------------
190    
191      ytherm = 0.      ytherm = 0.
192    
     IF (debugindex .AND. first_appel) THEN  
        first_appel = .FALSE.  
   
        ! initialisation sorties netcdf  
   
        idayref = day_ini  
        CALL ymds2ju(annee_ref, 1, idayref, 0., zjulian)  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
        DO i = 1, iim  
           zx_lon(i, 1) = rlon(i+1)  
           zx_lon(i, jjm+1) = rlon(i+1)  
        END DO  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
        cldebug = 'sous_index'  
        CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
             iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
        ! no vertical axis  
        cl_surf(1) = 'ter'  
        cl_surf(2) = 'lic'  
        cl_surf(3) = 'oce'  
        cl_surf(4) = 'sic'  
        DO nsrf = 1, nbsrf  
           CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
                nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
        END DO  
        CALL histend(nidbg)  
        CALL histsync(nidbg)  
     END IF  
   
193      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
194         DO i = 1, klon         DO i = 1, klon
195            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
196         END DO         END DO
197      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
198    
199      ! Initialization:      ! Initialization:
200      rugmer = 0.      rugmer = 0.
# Line 349  contains Line 202  contains
202      cdragm = 0.      cdragm = 0.
203      dflux_t = 0.      dflux_t = 0.
204      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
205      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
206      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
207      yrain_f = 0.      yrain_f = 0.
208      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
     ytaux = 0.  
     ytauy = 0.  
     ysolsw = 0.  
     ysollw = 0.  
     ysollwdown = 0.  
209      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
210      ypaprs = 0.      ypaprs = 0.
211      ypplay = 0.      ypplay = 0.
212      ydelp = 0.      ydelp = 0.
     yu = 0.  
     yv = 0.  
     yt = 0.  
     yq = 0.  
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     !$$ PB  
     y_dflux_t = 0.  
     y_dflux_q = 0.  
     ytsoil = 999999.  
213      yrugoro = 0.      yrugoro = 0.
     ! -- LOOP  
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
     ! -- LOOP  
214      d_ts = 0.      d_ts = 0.
     !§§§ PB  
     yfluxlat = 0.  
215      flux_t = 0.      flux_t = 0.
216      flux_q = 0.      flux_q = 0.
217      flux_u = 0.      flux_u = 0.
218      flux_v = 0.      flux_v = 0.
219        fluxlat = 0.
220      d_t = 0.      d_t = 0.
221      d_q = 0.      d_q = 0.
222      d_u = 0.      d_u = 0.
223      d_v = 0.      d_v = 0.
224      zcoefh = 0.      coefh = 0.
225        fqcalving = 0.
226        run_off_lic = 0.
227    
228        ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
229        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
230        ! (\`a affiner).
231    
232      ! Boucler sur toutes les sous-fractions du sol:      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
233        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
     ! Initialisation des "pourcentages potentiels". On considère ici qu'on  
     ! peut avoir potentiellement de la glace sur tout le domaine océanique  
     ! (à affiner)  
   
     pctsrf_pot = pctsrf  
234      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
235      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
236    
237      DO nsrf = 1, nbsrf      ! Tester si c'est le moment de lire le fichier:
238         ! chercher les indices:      if (mod(itap - 1, lmt_pas) == 0) then
239           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
240        endif
241    
242        ! Boucler sur toutes les sous-fractions du sol:
243    
244        loop_surface: DO nsrf = 1, nbsrf
245           ! Chercher les indices :
246         ni = 0         ni = 0
247         knon = 0         knon = 0
248         DO i = 1, klon         DO i = 1, klon
249            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
250            ! "potentielles"            ! "potentielles"
251            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
252               knon = knon + 1               knon = knon + 1
# Line 425  contains Line 254  contains
254            END IF            END IF
255         END DO         END DO
256    
257         ! variables pour avoir une sortie IOIPSL des INDEX         if_knon: IF (knon /= 0) then
        IF (debugindex) THEN  
           tabindx = 0.  
           DO i = 1, knon  
              tabindx(i) = real(i)  
           END DO  
           debugtab = 0.  
           ndexbg = 0  
           CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
           CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
        END IF  
   
        IF (knon == 0) CYCLE  
   
        DO j = 1, knon  
           i = ni(j)  
           ypct(j) = pctsrf(i, nsrf)  
           yts(j) = ts(i, nsrf)  
           ytslab(i) = tslab(i)  
           ysnow(j) = snow(i, nsrf)  
           yqsurf(j) = qsurf(i, nsrf)  
           yalb(j) = albe(i, nsrf)  
           yalblw(j) = alblw(i, nsrf)  
           yrain_f(j) = rain_f(i)  
           ysnow_f(j) = snow_f(i)  
           yagesno(j) = agesno(i, nsrf)  
           yfder(j) = fder(i)  
           ytaux(j) = flux_u(i, 1, nsrf)  
           ytauy(j) = flux_v(i, 1, nsrf)  
           ysolsw(j) = solsw(i, nsrf)  
           ysollw(j) = sollw(i, nsrf)  
           ysollwdown(j) = sollwdown(i)  
           yrugos(j) = rugos(i, nsrf)  
           yrugoro(j) = rugoro(i)  
           yu1(j) = u1lay(i)  
           yv1(j) = v1lay(i)  
           yrads(j) = ysolsw(j) + ysollw(j)  
           ypaprs(j, klev+1) = paprs(i, klev+1)  
           y_run_off_lic_0(j) = run_off_lic_0(i)  
           yu10mx(j) = u10m(i, nsrf)  
           yu10my(j) = v10m(i, nsrf)  
           ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
        END DO  
   
        ! IF bucket model for continent, copy soil water content  
        IF (nsrf == is_ter .AND. .NOT. ok_veget) THEN  
258            DO j = 1, knon            DO j = 1, knon
259               i = ni(j)               i = ni(j)
260               yqsol(j) = qsol(i)               ypct(j) = pctsrf(i, nsrf)
261                 yts(j) = ftsol(i, nsrf)
262                 snow(j) = fsnow(i, nsrf)
263                 yqsurf(j) = qsurf(i, nsrf)
264                 yalb(j) = falbe(i, nsrf)
265                 yrain_f(j) = rain_fall(i)
266                 ysnow_f(j) = snow_f(i)
267                 yagesno(j) = agesno(i, nsrf)
268                 yrugos(j) = frugs(i, nsrf)
269                 yrugoro(j) = rugoro(i)
270                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
271                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
272                 y_run_off_lic_0(j) = run_off_lic_0(i)
273            END DO            END DO
        ELSE  
           yqsol = 0.  
        END IF  
        !$$$ PB ajour pour soil  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ytsoil(j, k) = ftsoil(i, k, nsrf)  
           END DO  
        END DO  
        DO k = 1, klev  
           DO j = 1, knon  
              i = ni(j)  
              ypaprs(j, k) = paprs(i, k)  
              ypplay(j, k) = pplay(i, k)  
              ydelp(j, k) = delp(i, k)  
              yu(j, k) = u(i, k)  
              yv(j, k) = v(i, k)  
              yt(j, k) = t(i, k)  
              yq(j, k) = q(i, k)  
           END DO  
        END DO  
274    
275         ! calculer Cdrag et les coefficients d'echange            ! For continent, copy soil water content
276         CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
             yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
        IF (iflag_pbl == 1) THEN  
           CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
           DO k = 1, klev  
              DO i = 1, knon  
                 ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                 ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
              END DO  
           END DO  
        END IF  
   
        ! on seuille ycoefm et ycoefh  
        IF (nsrf == is_oce) THEN  
           DO j = 1, knon  
              ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
              ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
           END DO  
        END IF  
277    
278         IF (ok_kzmin) THEN            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
           ! Calcul d'une diffusion minimale pour les conditions tres stables  
           CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm(:, 1), &  
                ycoefm0, ycoefh0)  
   
           DO k = 1, klev  
              DO i = 1, knon  
                 ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                 ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
              END DO  
           END DO  
        END IF  
279    
        IF (iflag_pbl >= 3) THEN  
           ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et Frédéric Hourdin  
           yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
                1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
           DO k = 2, klev  
              yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                   + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                   / ypaprs(1:knon, k) &  
                   * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
           END DO  
280            DO k = 1, klev            DO k = 1, klev
              yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                   / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
           END DO  
           yzlev(1:knon, 1) = 0.  
           yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
           DO k = 2, klev  
              yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
           END DO  
           DO k = 1, klev + 1  
281               DO j = 1, knon               DO j = 1, knon
282                  i = ni(j)                  i = ni(j)
283                  yq2(j, k) = q2(i, k, nsrf)                  ypaprs(j, k) = paprs(i, k)
284                    ypplay(j, k) = pplay(i, k)
285                    ydelp(j, k) = delp(i, k)
286                    yu(j, k) = u(i, k)
287                    yv(j, k) = v(i, k)
288                    yt(j, k) = t(i, k)
289                    yq(j, k) = q(i, k)
290               END DO               END DO
291            END DO            END DO
292    
293            y_cd_m(1:knon) = ycoefm(1:knon, 1)            ! Calculer les géopotentiels de chaque couche:
           y_cd_h(1:knon) = ycoefh(1:knon, 1)  
           CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
294    
295            IF (prt_level>9) THEN            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
296               PRINT *, 'USTAR = ', yustar                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
           END IF  
297    
298            ! iflag_pbl peut être utilisé comme longueur de mélange            DO k = 2, klev
299                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
300                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
301                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
302              ENDDO
303    
304              CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
305                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
306                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
307                   ycdragh(:knon))
308    
309              IF (iflag_pbl == 1) THEN
310                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
311                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
312              end IF
313    
314            IF (iflag_pbl >= 11) THEN            ! on met un seuil pour ycdragm et ycdragh
315               CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &            IF (nsrf == is_oce) THEN
316                    yu, yv, yteta, y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, &               ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
317                    iflag_pbl)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
           ELSE  
              CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                   y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
318            END IF            END IF
319    
320            ycoefm(1:knon, 1) = y_cd_m(1:knon)            IF (iflag_pbl >= 6) then
321            ycoefh(1:knon, 1) = y_cd_h(1:knon)               DO k = 1, klev + 1
322            ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)                  DO j = 1, knon
323            ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)                     i = ni(j)
324         END IF                     yq2(j, k) = q2(i, k, nsrf)
325                    END DO
326         ! calculer la diffusion des vitesses "u" et "v"               END DO
327         CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &            end IF
             ydelp, y_d_u, y_flux_u)  
        CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
             ydelp, y_d_v, y_flux_v)  
   
        ! pour le couplage  
        ytaux = y_flux_u(:, 1)  
        ytauy = y_flux_v(:, 1)  
   
        ! calculer la diffusion de "q" et de "h"  
        CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
             cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
             yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
             yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
             ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
             yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
             yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
             yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
             y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
             ytslab, y_seaice)  
   
        ! calculer la longueur de rugosite sur ocean  
        yrugm = 0.  
        IF (nsrf == is_oce) THEN  
           DO j = 1, knon  
              yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                   0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
              yrugm(j) = max(1.5E-05, yrugm(j))  
           END DO  
        END IF  
        DO j = 1, knon  
           y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
           y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
           yu1(j) = yu1(j)*ypct(j)  
           yv1(j) = yv1(j)*ypct(j)  
        END DO  
328    
329         DO k = 1, klev            call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), &
330            DO j = 1, knon                 ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
331               i = ni(j)                 yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
332               ycoefh(j, k) = ycoefh(j, k)*ypct(j)                 ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
333               ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
334               y_d_t(j, k) = y_d_t(j, k)*ypct(j)            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
335               y_d_q(j, k) = y_d_q(j, k)*ypct(j)                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
336               flux_t(i, k, nsrf) = y_flux_t(j, k)                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
337               flux_q(i, k, nsrf) = y_flux_q(j, k)                 y_flux_u(:knon))
338               flux_u(i, k, nsrf) = y_flux_u(j, k)            CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
339               flux_v(i, k, nsrf) = y_flux_v(j, k)                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
340               y_d_u(j, k) = y_d_u(j, k)*ypct(j)                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
341               y_d_v(j, k) = y_d_v(j, k)*ypct(j)                 y_flux_v(:knon))
342            END DO  
343         END DO            CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), &
344                   mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), &
345                   yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), &
346                   yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), &
347                   ydelp(:knon, :), yrads(:knon), yalb(:knon), snow(:knon), &
348                   yqsurf(:knon), yrain_f(:knon), ysnow_f(:knon), yfluxlat(:knon), &
349                   pctsrf_new_sic(ni(:knon)), yagesno(:knon), y_d_t(:knon, :), &
350                   y_d_q(:knon, :), y_d_ts(:knon), yz0_new(:knon), &
351                   y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), &
352                   y_dflux_q(:knon), y_fqcalving(:knon), y_ffonte(:knon), &
353                   y_run_off_lic_0(:knon), y_run_off_lic(:knon))
354    
355         evap(:, nsrf) = -flux_q(:, 1, nsrf)            ! calculer la longueur de rugosite sur ocean
356    
357              yrugm = 0.
358    
        albe(:, nsrf) = 0.  
        alblw(:, nsrf) = 0.  
        snow(:, nsrf) = 0.  
        qsurf(:, nsrf) = 0.  
        rugos(:, nsrf) = 0.  
        fluxlat(:, nsrf) = 0.  
        DO j = 1, knon  
           i = ni(j)  
           d_ts(i, nsrf) = y_d_ts(j)  
           albe(i, nsrf) = yalb(j)  
           alblw(i, nsrf) = yalblw(j)  
           snow(i, nsrf) = ysnow(j)  
           qsurf(i, nsrf) = yqsurf(j)  
           rugos(i, nsrf) = yz0_new(j)  
           fluxlat(i, nsrf) = yfluxlat(j)  
359            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
360               rugmer(i) = yrugm(j)               DO j = 1, knon
361               rugos(i, nsrf) = yrugm(j)                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
362                         / rg + 0.11 * 14E-6 &
363                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
364                    yrugm(j) = max(1.5E-05, yrugm(j))
365                 END DO
366            END IF            END IF
           agesno(i, nsrf) = yagesno(j)  
           fqcalving(i, nsrf) = y_fqcalving(j)  
           ffonte(i, nsrf) = y_ffonte(j)  
           cdragh(i) = cdragh(i) + ycoefh(j, 1)  
           cdragm(i) = cdragm(i) + ycoefm(j, 1)  
           dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
           dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
           zu1(i) = zu1(i) + yu1(j)  
           zv1(i) = zv1(i) + yv1(j)  
        END DO  
        IF (nsrf == is_ter) THEN  
           DO j = 1, knon  
              i = ni(j)  
              qsol(i) = yqsol(j)  
           END DO  
        END IF  
        IF (nsrf == is_lic) THEN  
           DO j = 1, knon  
              i = ni(j)  
              run_off_lic_0(i) = y_run_off_lic_0(j)  
           END DO  
        END IF  
        !$$$ PB ajout pour soil  
        ftsoil(:, :, nsrf) = 0.  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ftsoil(i, k, nsrf) = ytsoil(j, k)  
           END DO  
        END DO  
367    
        DO j = 1, knon  
           i = ni(j)  
368            DO k = 1, klev            DO k = 1, klev
369               d_t(i, k) = d_t(i, k) + y_d_t(j, k)               DO j = 1, knon
370               d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  i = ni(j)
371               d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
372               d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
373               zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
374                    y_d_v(j, k) = y_d_v(j, k) * ypct(j)
375                 END DO
376            END DO            END DO
        END DO  
   
        !cc diagnostic t, q a 2m et u, v a 10m  
377    
378         DO j = 1, knon            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
379            i = ni(j)            flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
380            uzon(j) = yu(j, 1) + y_d_u(j, 1)            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
381            vmer(j) = yv(j, 1) + y_d_v(j, 1)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
382            tair1(j) = yt(j, 1) + y_d_t(j, 1)  
383            qair1(j) = yq(j, 1) + y_d_q(j, 1)            evap(:, nsrf) = -flux_q(:, nsrf)
384            zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
385                 1)))*(ypaprs(j, 1)-ypplay(j, 1))            falbe(:, nsrf) = 0.
386            tairsol(j) = yts(j) + y_d_ts(j)            fsnow(:, nsrf) = 0.
387            rugo1(j) = yrugos(j)            qsurf(:, nsrf) = 0.
388            IF (nsrf == is_oce) THEN            frugs(:, nsrf) = 0.
389               rugo1(j) = rugos(i, nsrf)            DO j = 1, knon
390                 i = ni(j)
391                 d_ts(i, nsrf) = y_d_ts(j)
392                 falbe(i, nsrf) = yalb(j)
393                 fsnow(i, nsrf) = snow(j)
394                 qsurf(i, nsrf) = yqsurf(j)
395                 frugs(i, nsrf) = yz0_new(j)
396                 fluxlat(i, nsrf) = yfluxlat(j)
397                 IF (nsrf == is_oce) THEN
398                    rugmer(i) = yrugm(j)
399                    frugs(i, nsrf) = yrugm(j)
400                 END IF
401                 agesno(i, nsrf) = yagesno(j)
402                 fqcalving(i, nsrf) = y_fqcalving(j)
403                 ffonte(i, nsrf) = y_ffonte(j)
404                 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
405                 cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
406                 dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypct(j)
407                 dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypct(j)
408              END DO
409              IF (nsrf == is_ter) THEN
410                 qsol(ni(:knon)) = yqsol(:knon)
411              else IF (nsrf == is_lic) THEN
412                 DO j = 1, knon
413                    i = ni(j)
414                    run_off_lic_0(i) = y_run_off_lic_0(j)
415                    run_off_lic(i) = y_run_off_lic(j)
416                 END DO
417            END IF            END IF
           psfce(j) = ypaprs(j, 1)  
           patm(j) = ypplay(j, 1)  
418    
419            qairsol(j) = yqsurf(j)            ftsoil(:, :, nsrf) = 0.
420         END DO            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
421    
422         CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &            DO j = 1, knon
423              tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &               i = ni(j)
424              yu10m, yustar)               DO k = 1, klev
425                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
426         DO j = 1, knon                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
427            i = ni(j)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
428            t2m(i, nsrf) = yt2m(j)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
429            q2m(i, nsrf) = yq2m(j)               END DO
430              END DO
           ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
           u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
           v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
431    
432         END DO            forall (k = 2:klev) coefh(ni(:knon), k) &
433                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
434    
435         DO i = 1, knon            ! diagnostic t, q a 2m et u, v a 10m
           y_cd_h(i) = ycoefh(i, 1)  
           y_cd_m(i) = ycoefm(i, 1)  
        END DO  
        CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
             y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
             ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
        DO j = 1, knon  
           i = ni(j)  
           pblh(i, nsrf) = ypblh(j)  
           plcl(i, nsrf) = ylcl(j)  
           capcl(i, nsrf) = ycapcl(j)  
           oliqcl(i, nsrf) = yoliqcl(j)  
           cteicl(i, nsrf) = ycteicl(j)  
           pblt(i, nsrf) = ypblt(j)  
           therm(i, nsrf) = ytherm(j)  
           trmb1(i, nsrf) = ytrmb1(j)  
           trmb2(i, nsrf) = ytrmb2(j)  
           trmb3(i, nsrf) = ytrmb3(j)  
        END DO  
436    
437         DO j = 1, knon            DO j = 1, knon
           DO k = 1, klev + 1  
438               i = ni(j)               i = ni(j)
439               q2(i, k, nsrf) = yq2(j, k)               u1(j) = yu(j, 1) + y_d_u(j, 1)
440                 v1(j) = yv(j, 1) + y_d_v(j, 1)
441                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
442                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
443                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
444                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
445                 tairsol(j) = yts(j) + y_d_ts(j)
446                 rugo1(j) = yrugos(j)
447                 IF (nsrf == is_oce) THEN
448                    rugo1(j) = frugs(i, nsrf)
449                 END IF
450                 psfce(j) = ypaprs(j, 1)
451                 patm(j) = ypplay(j, 1)
452    
453                 qairsol(j) = yqsurf(j)
454            END DO            END DO
455         END DO  
456         !IM "slab" ocean            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
457         IF (nsrf == is_oce) THEN                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, &
458                   yq10m, wind10m(:knon), ustar(:knon))
459    
460            DO j = 1, knon            DO j = 1, knon
              ! on projette sur la grille globale  
461               i = ni(j)               i = ni(j)
462               IF (pctsrf_new(i, is_oce)>epsfra) THEN               t2m(i, nsrf) = yt2m(j)
463                  flux_o(i) = y_flux_o(j)               q2m(i, nsrf) = yq2m(j)
464               ELSE  
465                  flux_o(i) = 0.               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
466               END IF                    / sqrt(u1(j)**2 + v1(j)**2)
467                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
468                      / sqrt(u1(j)**2 + v1(j)**2)
469            END DO            END DO
        END IF  
470    
471         IF (nsrf == is_sic) THEN            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
472                   y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
473                   yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, &
474                   ytherm, ylcl)
475    
476            DO j = 1, knon            DO j = 1, knon
477               i = ni(j)               i = ni(j)
478               ! On pondère lorsque l'on fait le bilan au sol :               pblh(i, nsrf) = ypblh(j)
479               IF (pctsrf_new(i, is_sic)>epsfra) THEN               plcl(i, nsrf) = ylcl(j)
480                  flux_g(i) = y_flux_g(j)               capcl(i, nsrf) = ycapcl(j)
481               ELSE               oliqcl(i, nsrf) = yoliqcl(j)
482                  flux_g(i) = 0.               cteicl(i, nsrf) = ycteicl(j)
483               END IF               pblt(i, nsrf) = ypblt(j)
484                 therm(i, nsrf) = ytherm(j)
485            END DO            END DO
486    
487         END IF            DO j = 1, knon
488         IF (ocean == 'slab  ') THEN               DO k = 1, klev + 1
489            IF (nsrf == is_oce) THEN                  i = ni(j)
490               tslab(1:klon) = ytslab(1:klon)                  q2(i, k, nsrf) = yq2(j, k)
491               seaice(1:klon) = y_seaice(1:klon)               END DO
492            END IF            END DO
493         END IF         else
494      END DO            fsnow(:, nsrf) = 0.
495           end IF if_knon
496        END DO loop_surface
497    
498      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
499        frugs(:, is_oce) = rugmer
500        pctsrf(:, is_oce) = pctsrf_new_oce
501        pctsrf(:, is_sic) = pctsrf_new_sic
502    
503      rugos(:, is_oce) = rugmer      CALL histwrite_phy("run_off_lic", run_off_lic)
     pctsrf = pctsrf_new  
504    
505    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
506    
507  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.47  
changed lines
  Added in v.301

  ViewVC Help
Powered by ViewVC 1.1.21