/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 40 by guez, Tue Feb 22 13:49:36 2011 UTC trunk/phylmd/pbl_surface.f revision 276 by guez, Thu Jul 12 14:49:20 2018 UTC
# Line 1  Line 1 
1  module clmain_m  module pbl_surface_m
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&    SUBROUTINE pbl_surface(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, &
8         jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&         cdmmax, cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, &
9         soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&         fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, &
10         qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&         d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, &
11         rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&         q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&         oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0)
13         d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
14         dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
15         capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
16         fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)      ! Objet : interface de couche limite (diffusion verticale)
17    
18      ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
19      ! Author: Z.X. Li (LMD/CNRS), date: 1993/08/18      ! de la couche limite pour les traceurs se fait avec "cltrac" et
20      ! Objet : interface de "couche limite" (diffusion verticale)      ! ne tient pas compte de la diff\'erentiation des sous-fractions
21        ! de sol.
22      ! Tout ce qui a trait aux traceurs est dans "phytrac" maintenant.  
23      ! Pour l'instant le calcul de la couche limite pour les traceurs      use cdrag_m, only: cdrag
24      ! se fait avec "cltrac" et ne tient pas compte de la différentiation      use clqh_m, only: clqh
25      ! des sous-fractions de sol.      use clvent_m, only: clvent
26        use coef_diff_turb_m, only: coef_diff_turb
27      ! Pour pouvoir extraire les coefficients d'échanges et le vent      USE conf_gcm_m, ONLY: lmt_pas
28      ! dans la première couche, trois champs supplémentaires ont été      USE conf_phys_m, ONLY: iflag_pbl
29      ! créés : "zcoefh", "zu1" et "zv1". Pour l'instant nous avons      USE dimphy, ONLY: klev, klon
30      ! moyenné les valeurs de ces trois champs sur les 4 sous-surfaces      USE dimsoil, ONLY: nsoilmx
31      ! du modèle. Dans l'avenir, si les informations des sous-surfaces      use hbtm_m, only: hbtm
32      ! doivent être prises en compte, il faudra sortir ces mêmes champs      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
33      ! en leur ajoutant une dimension, c'est-à-dire "nbsrf" (nombre de      USE interfoce_lim_m, ONLY: interfoce_lim
34      ! sous-surfaces).      use phyetat0_m, only: zmasq
35        use stdlevvar_m, only: stdlevvar
36      ! Arguments:      USE suphec_m, ONLY: rd, rg
37      ! dtime----input-R- interval du temps (secondes)      use time_phylmdz, only: itap
38      ! itap-----input-I- numero du pas de temps  
39      ! date0----input-R- jour initial      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
40      ! t--------input-R- temperature (K)  
41      ! q--------input-R- vapeur d'eau (kg/kg)      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
42      ! u--------input-R- vitesse u      ! tableau des pourcentages de surface de chaque maille
43      ! v--------input-R- vitesse v  
44      ! ts-------input-R- temperature du sol (en Kelvin)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
45      ! paprs----input-R- pression a intercouche (Pa)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
46      ! pplay----input-R- pression au milieu de couche (Pa)      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
47      ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
48      ! rlat-----input-R- latitude en degree      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
49      ! rugos----input-R- longeur de rugosite (en m)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
50      ! cufi-----input-R- resolution des mailles en x (m)      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
51      ! cvfi-----input-R- resolution des mailles en y (m)  
52        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
53        ! soil temperature of surface fraction
54    
55        REAL, INTENT(inout):: qsol(:) ! (klon)
56        ! column-density of water in soil, in kg m-2
57    
58        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
59        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
60        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
61        REAL qsurf(klon, nbsrf)
62        REAL evap(klon, nbsrf)
63        REAL, intent(inout):: falbe(klon, nbsrf)
64        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
65    
66      ! d_t------output-R- le changement pour "t"      REAL, intent(in):: rain_fall(klon)
67      ! d_q------output-R- le changement pour "q"      ! liquid water mass flux (kg / m2 / s), positive down
     ! d_u------output-R- le changement pour "u"  
     ! d_v------output-R- le changement pour "v"  
     ! d_ts-----output-R- le changement pour "ts"  
     ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
     !                    (orientation positive vers le bas)  
     ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
     ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
     ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
     ! dflux_t derive du flux sensible  
     ! dflux_q derive du flux latent  
     !IM "slab" ocean  
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
68    
69      ! tslab-in/output-R temperature du slab ocean (en Kelvin)      REAL, intent(in):: snow_f(klon)
70      ! uniqmnt pour slab      ! solid water mass flux (kg / m2 / s), positive down
71    
72      ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')      REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
73      !cc      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
74      ! ffonte----Flux thermique utilise pour fondre la neige      real agesno(klon, nbsrf)
75      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      REAL, INTENT(IN):: rugoro(klon)
     !           hauteur de neige, en kg/m2/s  
     ! on rajoute en output yu1 et yv1 qui sont les vents dans  
     ! la premiere couche  
     ! ces 4 variables sont maintenant traites dans phytrac  
     ! itr--------input-I- nombre de traceurs  
     ! tr---------input-R- q. de traceurs  
     ! flux_surf--input-R- flux de traceurs a la surface  
     ! d_tr-------output-R tendance de traceurs  
     !IM cf. AM : PBL  
     ! trmb1-------deep_cape  
     ! trmb2--------inhibition  
     ! trmb3-------Point Omega  
     ! Cape(klon)-------Cape du thermique  
     ! EauLiq(klon)-------Eau liqu integr du thermique  
     ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
     ! lcl------- Niveau de condensation  
     ! pblh------- HCL  
     ! pblT------- T au nveau HCL  
   
     USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
     use histwrite_m, only: histwrite  
     use calendar, ONLY : ymds2ju  
     USE dimens_m, ONLY : iim, jjm  
     USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
     USE dimphy, ONLY : klev, klon, zmasq  
     USE dimsoil, ONLY : nsoilmx  
     USE temps, ONLY : annee_ref, itau_phy  
     USE dynetat0_m, ONLY : day_ini  
     USE iniprint, ONLY : prt_level  
     USE suphec_m, ONLY : rd, rg, rkappa  
     USE conf_phys_m, ONLY : iflag_pbl  
     USE gath_cpl, ONLY : gath2cpl  
     use hbtm_m, only: hbtm  
76    
     REAL, INTENT (IN) :: dtime  
     REAL date0  
     INTEGER, INTENT (IN) :: itap  
     REAL t(klon, klev), q(klon, klev)  
     REAL u(klon, klev), v(klon, klev)  
     REAL, INTENT (IN) :: paprs(klon, klev+1)  
     REAL, INTENT (IN) :: pplay(klon, klev)  
     REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
     REAL cufi(klon), cvfi(klon)  
77      REAL d_t(klon, klev), d_q(klon, klev)      REAL d_t(klon, klev), d_q(klon, klev)
78      REAL d_u(klon, klev), d_v(klon, klev)      ! d_t------output-R- le changement pour "t"
79      REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)      ! d_q------output-R- le changement pour "q"
     REAL dflux_t(klon), dflux_q(klon)  
     !IM "slab" ocean  
     REAL flux_o(klon), flux_g(klon)  
     REAL y_flux_o(klon), y_flux_g(klon)  
     REAL tslab(klon), ytslab(klon)  
     REAL seaice(klon), y_seaice(klon)  
     REAL y_fqcalving(klon), y_ffonte(klon)  
     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
     REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
80    
81      REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
82      REAL rugmer(klon), agesno(klon, nbsrf)      ! changement pour "u" et "v"
     REAL, INTENT (IN) :: rugoro(klon)  
     REAL cdragh(klon), cdragm(klon)  
     ! jour de l'annee en cours                  
     INTEGER jour  
     REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
     ! taux CO2 atmosphere                      
     REAL co2_ppm  
     LOGICAL, INTENT (IN) :: debut  
     LOGICAL, INTENT (IN) :: lafin  
     LOGICAL ok_veget  
     CHARACTER (len=*), INTENT (IN) :: ocean  
     INTEGER npas, nexca  
   
     REAL pctsrf(klon, nbsrf)  
     REAL ts(klon, nbsrf)  
     REAL d_ts(klon, nbsrf)  
     REAL snow(klon, nbsrf)  
     REAL qsurf(klon, nbsrf)  
     REAL evap(klon, nbsrf)  
     REAL albe(klon, nbsrf)  
     REAL alblw(klon, nbsrf)  
83    
84      REAL fluxlat(klon, nbsrf)      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
85    
86      REAL rain_f(klon), snow_f(klon)      REAL, intent(out):: flux_t(klon, nbsrf)
87      REAL fder(klon)      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
88        ! le bas) à la surface
89    
90      REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)      REAL, intent(out):: flux_q(klon, nbsrf)
91      REAL rugos(klon, nbsrf)      ! flux de vapeur d'eau (kg / m2 / s) à la surface
     ! la nouvelle repartition des surfaces sortie de l'interface  
     REAL pctsrf_new(klon, nbsrf)  
92    
93      REAL zcoefh(klon, klev)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
94      REAL zu1(klon)      ! tension du vent (flux turbulent de vent) à la surface, en Pa
     REAL zv1(klon)  
95    
96      !$$$ PB ajout pour soil      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
97      LOGICAL, INTENT (IN) :: soil_model      real q2(klon, klev + 1, nbsrf)
     !IM ajout seuils cdrm, cdrh  
     REAL cdmmax, cdhmax  
98    
99      REAL ksta, ksta_ter      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
100      LOGICAL ok_kzmin      ! dflux_t derive du flux sensible
101        ! dflux_q derive du flux latent
102        ! IM "slab" ocean
103    
104      REAL ftsoil(klon, nsoilmx, nbsrf)      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
105      REAL ytsoil(klon, nsoilmx)      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
106      REAL qsol(klon)      ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
107        ! ce champ sur les quatre sous-surfaces du mod\`ele.
108    
109        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
110    
111        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
112        ! composantes du vent \`a 10m sans spirale d'Ekman
113    
114        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
115        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
116        ! de sortir les grandeurs par sous-surface.
117        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
118        REAL capcl(klon, nbsrf)
119        REAL oliqcl(klon, nbsrf)
120        REAL cteicl(klon, nbsrf)
121        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
122        REAL therm(klon, nbsrf)
123        REAL plcl(klon, nbsrf)
124        REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
125        ! ffonte----Flux thermique utilise pour fondre la neige
126        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
127        !           hauteur de neige, en kg / m2 / s
128        REAL run_off_lic_0(klon)
129    
130        ! Local:
131    
132      EXTERNAL clqh, clvent, coefkz, calbeta, cltrac      LOGICAL:: firstcal = .true.
133    
134        ! la nouvelle repartition des surfaces sortie de l'interface
135        REAL, save:: pctsrf_new_oce(klon)
136        REAL, save:: pctsrf_new_sic(klon)
137    
138      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
139        real y_run_off_lic_0(klon)
140        REAL rugmer(klon)
141        REAL ytsoil(klon, nsoilmx)
142        REAL yts(klon), ypct(klon), yz0_new(klon)
143        real yrugos(klon) ! longeur de rugosite (en m)
144      REAL yalb(klon)      REAL yalb(klon)
145      REAL yalblw(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
146      REAL yu1(klon), yv1(klon)      real yqsol(klon) ! column-density of water in soil, in kg m-2
147      REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
148      REAL yrain_f(klon), ysnow_f(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
     REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
     REAL yfder(klon), ytaux(klon), ytauy(klon)  
149      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
150      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
151      REAL y_d_ts(klon)      REAL y_d_ts(klon)
152      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
153      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
154      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
155      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
156      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
157      REAL ycoefh(klon, klev), ycoefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
158        real ycdragh(klon), ycdragm(klon)
159      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
160      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
161      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
162        REAL yq2(klon, klev + 1)
     LOGICAL ok_nonloc  
     PARAMETER (ok_nonloc=.FALSE.)  
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     !IM 081204 hcl_Anne ? BEG  
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
     REAL q2diag(klon, klev+1)  
     !IM 081204 hcl_Anne ? END  
   
     REAL u1lay(klon), v1lay(klon)  
163      REAL delp(klon, klev)      REAL delp(klon, klev)
164      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
165      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
166    
167      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
168      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
169      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
170    
171      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL yt2m(klon), yq2m(klon), wind10m(klon)
172        REAL ustar(klon)
     ! maf pour sorties IOISPL en cas de debugagage  
   
     CHARACTER (80) cldebug  
     SAVE cldebug  
     CHARACTER (8) cl_surf(nbsrf)  
     SAVE cl_surf  
     INTEGER nhoridbg, nidbg  
     SAVE nhoridbg, nidbg  
     INTEGER ndexbg(iim*(jjm+1))  
     REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
     REAL tabindx(klon)  
     REAL debugtab(iim, jjm+1)  
     LOGICAL first_appel  
     SAVE first_appel  
     DATA first_appel/ .TRUE./  
     LOGICAL :: debugindex = .FALSE.  
     INTEGER idayref  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
173    
174      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
     !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
     ! physiq ce qui permet de sortir les grdeurs par sous surface)  
     REAL pblh(klon, nbsrf)  
     REAL plcl(klon, nbsrf)  
     REAL capcl(klon, nbsrf)  
     REAL oliqcl(klon, nbsrf)  
     REAL cteicl(klon, nbsrf)  
     REAL pblt(klon, nbsrf)  
     REAL therm(klon, nbsrf)  
     REAL trmb1(klon, nbsrf)  
     REAL trmb2(klon, nbsrf)  
     REAL trmb3(klon, nbsrf)  
175      REAL ypblh(klon)      REAL ypblh(klon)
176      REAL ylcl(klon)      REAL ylcl(klon)
177      REAL ycapcl(klon)      REAL ycapcl(klon)
# Line 276  contains Line 179  contains
179      REAL ycteicl(klon)      REAL ycteicl(klon)
180      REAL ypblt(klon)      REAL ypblt(klon)
181      REAL ytherm(klon)      REAL ytherm(klon)
182      REAL ytrmb1(klon)      REAL u1(klon), v1(klon)
     REAL ytrmb2(klon)  
     REAL ytrmb3(klon)  
     REAL y_cd_h(klon), y_cd_m(klon)  
     REAL uzon(klon), vmer(klon)  
183      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
184      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
185    
186      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
187      REAL rugo1(klon)      REAL rugo1(klon)
188        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
     REAL zt, zqs, zdelta, zcor  
     REAL t_coup  
     PARAMETER (t_coup=273.15)  
   
     CHARACTER (len=20) :: modname = 'clmain'  
189    
190      !------------------------------------------------------------      !------------------------------------------------------------
191    
192      ytherm = 0.      ytherm = 0.
193    
     IF (debugindex .AND. first_appel) THEN  
        first_appel = .FALSE.  
   
        ! initialisation sorties netcdf  
   
        idayref = day_ini  
        CALL ymds2ju(annee_ref, 1, idayref, 0., zjulian)  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
        DO i = 1, iim  
           zx_lon(i, 1) = rlon(i+1)  
           zx_lon(i, jjm+1) = rlon(i+1)  
        END DO  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
        cldebug = 'sous_index'  
        CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
             iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
        ! no vertical axis  
        cl_surf(1) = 'ter'  
        cl_surf(2) = 'lic'  
        cl_surf(3) = 'oce'  
        cl_surf(4) = 'sic'  
        DO nsrf = 1, nbsrf  
           CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
                nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
        END DO  
        CALL histend(nidbg)  
        CALL histsync(nidbg)  
     END IF  
   
194      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
195         DO i = 1, klon         DO i = 1, klon
196            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
197         END DO         END DO
198      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
199    
200      ! Initialization:      ! Initialization:
201      rugmer = 0.      rugmer = 0.
# Line 348  contains Line 203  contains
203      cdragm = 0.      cdragm = 0.
204      dflux_t = 0.      dflux_t = 0.
205      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
206      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
207      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
208      yrain_f = 0.      yrain_f = 0.
209      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
     ytaux = 0.  
     ytauy = 0.  
     ysolsw = 0.  
     ysollw = 0.  
     ysollwdown = 0.  
210      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
211      ypaprs = 0.      ypaprs = 0.
212      ypplay = 0.      ypplay = 0.
213      ydelp = 0.      ydelp = 0.
# Line 375  contains Line 215  contains
215      yv = 0.      yv = 0.
216      yt = 0.      yt = 0.
217      yq = 0.      yq = 0.
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     !$$ PB  
218      y_dflux_t = 0.      y_dflux_t = 0.
219      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
220      yrugoro = 0.      yrugoro = 0.
     ! -- LOOP  
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
     ! -- LOOP  
221      d_ts = 0.      d_ts = 0.
     !§§§ PB  
     yfluxlat = 0.  
222      flux_t = 0.      flux_t = 0.
223      flux_q = 0.      flux_q = 0.
224      flux_u = 0.      flux_u = 0.
225      flux_v = 0.      flux_v = 0.
226        fluxlat = 0.
227      d_t = 0.      d_t = 0.
228      d_q = 0.      d_q = 0.
229      d_u = 0.      d_u = 0.
230      d_v = 0.      d_v = 0.
231      zcoefh = 0.      coefh = 0.
232    
233      ! Boucler sur toutes les sous-fractions du sol:      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
234        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
235      ! Initialisation des "pourcentages potentiels". On considère ici qu'on      ! (\`a affiner)
     ! peut avoir potentiellement de la glace sur tout le domaine océanique  
     ! (à affiner)  
236    
237      pctsrf_pot = pctsrf      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
238        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
239      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
240      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
241    
242      DO nsrf = 1, nbsrf      ! Tester si c'est le moment de lire le fichier:
243         ! chercher les indices:      if (mod(itap - 1, lmt_pas) == 0) then
244           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
245        endif
246    
247        ! Boucler sur toutes les sous-fractions du sol:
248    
249        loop_surface: DO nsrf = 1, nbsrf
250           ! Chercher les indices :
251         ni = 0         ni = 0
252         knon = 0         knon = 0
253         DO i = 1, klon         DO i = 1, klon
254            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
255            ! "potentielles"            ! "potentielles"
256            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
257               knon = knon + 1               knon = knon + 1
# Line 424  contains Line 259  contains
259            END IF            END IF
260         END DO         END DO
261    
262         ! variables pour avoir une sortie IOIPSL des INDEX         if_knon: IF (knon /= 0) then
        IF (debugindex) THEN  
           tabindx = 0.  
           DO i = 1, knon  
              tabindx(i) = real(i)  
           END DO  
           debugtab = 0.  
           ndexbg = 0  
           CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
           CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
        END IF  
   
        IF (knon==0) CYCLE  
   
        DO j = 1, knon  
           i = ni(j)  
           ypct(j) = pctsrf(i, nsrf)  
           yts(j) = ts(i, nsrf)  
           ytslab(i) = tslab(i)  
           ysnow(j) = snow(i, nsrf)  
           yqsurf(j) = qsurf(i, nsrf)  
           yalb(j) = albe(i, nsrf)  
           yalblw(j) = alblw(i, nsrf)  
           yrain_f(j) = rain_f(i)  
           ysnow_f(j) = snow_f(i)  
           yagesno(j) = agesno(i, nsrf)  
           yfder(j) = fder(i)  
           ytaux(j) = flux_u(i, 1, nsrf)  
           ytauy(j) = flux_v(i, 1, nsrf)  
           ysolsw(j) = solsw(i, nsrf)  
           ysollw(j) = sollw(i, nsrf)  
           ysollwdown(j) = sollwdown(i)  
           yrugos(j) = rugos(i, nsrf)  
           yrugoro(j) = rugoro(i)  
           yu1(j) = u1lay(i)  
           yv1(j) = v1lay(i)  
           yrads(j) = ysolsw(j) + ysollw(j)  
           ypaprs(j, klev+1) = paprs(i, klev+1)  
           y_run_off_lic_0(j) = run_off_lic_0(i)  
           yu10mx(j) = u10m(i, nsrf)  
           yu10my(j) = v10m(i, nsrf)  
           ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
        END DO  
   
        !     IF bucket model for continent, copy soil water content  
        IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
263            DO j = 1, knon            DO j = 1, knon
264               i = ni(j)               i = ni(j)
265               yqsol(j) = qsol(i)               ypct(j) = pctsrf(i, nsrf)
266                 yts(j) = ftsol(i, nsrf)
267                 snow(j) = fsnow(i, nsrf)
268                 yqsurf(j) = qsurf(i, nsrf)
269                 yalb(j) = falbe(i, nsrf)
270                 yrain_f(j) = rain_fall(i)
271                 ysnow_f(j) = snow_f(i)
272                 yagesno(j) = agesno(i, nsrf)
273                 yrugos(j) = frugs(i, nsrf)
274                 yrugoro(j) = rugoro(i)
275                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
276                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
277                 y_run_off_lic_0(j) = run_off_lic_0(i)
278            END DO            END DO
        ELSE  
           yqsol = 0.  
        END IF  
        !$$$ PB ajour pour soil  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ytsoil(j, k) = ftsoil(i, k, nsrf)  
           END DO  
        END DO  
        DO k = 1, klev  
           DO j = 1, knon  
              i = ni(j)  
              ypaprs(j, k) = paprs(i, k)  
              ypplay(j, k) = pplay(i, k)  
              ydelp(j, k) = delp(i, k)  
              yu(j, k) = u(i, k)  
              yv(j, k) = v(i, k)  
              yt(j, k) = t(i, k)  
              yq(j, k) = q(i, k)  
           END DO  
        END DO  
279    
280         ! calculer Cdrag et les coefficients d'echange            ! For continent, copy soil water content
281         CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
282              yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
283         !IM 081204 BEG            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
284         !CR test  
        IF (iflag_pbl==1) THEN  
           !IM 081204 END  
           CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
285            DO k = 1, klev            DO k = 1, klev
286               DO i = 1, knon               DO j = 1, knon
287                  ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))                  i = ni(j)
288                  ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))                  ypaprs(j, k) = paprs(i, k)
289                    ypplay(j, k) = pplay(i, k)
290                    ydelp(j, k) = delp(i, k)
291                    yu(j, k) = u(i, k)
292                    yv(j, k) = v(i, k)
293                    yt(j, k) = t(i, k)
294                    yq(j, k) = q(i, k)
295               END DO               END DO
296            END DO            END DO
        END IF  
297    
298         !IM cf JLD : on seuille ycoefm et ycoefh            ! Calculer les géopotentiels de chaque couche:
        IF (nsrf==is_oce) THEN  
           DO j = 1, knon  
              !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
              ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
              !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
              ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
           END DO  
        END IF  
299    
300         !IM: 261103            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
301         IF (ok_kzmin) THEN                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
           !IM cf FH: 201103 BEG  
           !   Calcul d'une diffusion minimale pour les conditions tres stables.  
           CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, &  
                ycoefm0, ycoefh0)  
302    
303            IF (1==1) THEN            DO k = 2, klev
304               DO k = 1, klev               zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
305                  DO i = 1, knon                    * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
306                     ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))                    * (ypplay(:knon, k - 1) - ypplay(:knon, k))
307                     ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))            ENDDO
308    
309              CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), &
310                   yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), &
311                   yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), &
312                   ycdragh(:knon))
313    
314              IF (iflag_pbl == 1) THEN
315                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
316                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
317              end IF
318    
319              ! on met un seuil pour ycdragm et ycdragh
320              IF (nsrf == is_oce) THEN
321                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
322                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
323              END IF
324    
325              IF (iflag_pbl >= 6) then
326                 DO k = 1, klev + 1
327                    DO j = 1, knon
328                       i = ni(j)
329                       yq2(j, k) = q2(i, k, nsrf)
330                  END DO                  END DO
331               END DO               END DO
332              end IF
333    
334              call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), &
335                   ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), &
336                   yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), &
337                   ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :))
338    
339              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
340                   ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
341                   ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
342                   y_flux_u(:knon))
343              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
344                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
345                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
346                   y_flux_v(:knon))
347    
348              ! calculer la diffusion de "q" et de "h"
349              CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
350                   ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
351                   yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
352                   yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
353                   yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
354                   yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
355                   y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
356                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
357                   y_run_off_lic_0)
358    
359              ! calculer la longueur de rugosite sur ocean
360              yrugm = 0.
361              IF (nsrf == is_oce) THEN
362                 DO j = 1, knon
363                    yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
364                         / rg + 0.11 * 14E-6 &
365                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
366                    yrugm(j) = max(1.5E-05, yrugm(j))
367                 END DO
368            END IF            END IF
369            !IM cf FH: 201103 END            DO j = 1, knon
370            !IM: 261103               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
371         END IF !ok_kzmin               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
   
        IF (iflag_pbl>=3) THEN  
           ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et Frédéric Hourdin  
           yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
                1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
           DO k = 2, klev  
              yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                   + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                   / ypaprs(1:knon, k) &  
                   * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
372            END DO            END DO
373    
374            DO k = 1, klev            DO k = 1, klev
              yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                   / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
           END DO  
           yzlev(1:knon, 1) = 0.  
           yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
           DO k = 2, klev  
              yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
           END DO  
           DO k = 1, klev + 1  
375               DO j = 1, knon               DO j = 1, knon
376                  i = ni(j)                  i = ni(j)
377                  yq2(j, k) = q2(i, k, nsrf)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
378                    y_d_q(j, k) = y_d_q(j, k) * ypct(j)
379                    y_d_u(j, k) = y_d_u(j, k) * ypct(j)
380                    y_d_v(j, k) = y_d_v(j, k) * ypct(j)
381               END DO               END DO
382            END DO            END DO
383    
384            !   Bug introduit volontairement pour converger avec les resultats            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
385            !  du papier sur les thermiques.            flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
386            IF (1==1) THEN            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
387               y_cd_m(1:knon) = ycoefm(1:knon, 1)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
388               y_cd_h(1:knon) = ycoefh(1:knon, 1)  
389            ELSE            evap(:, nsrf) = -flux_q(:, nsrf)
390               y_cd_h(1:knon) = ycoefm(1:knon, 1)  
391               y_cd_m(1:knon) = ycoefh(1:knon, 1)            falbe(:, nsrf) = 0.
392            END IF            fsnow(:, nsrf) = 0.
393            CALL ustarhb(knon, yu, yv, y_cd_m, yustar)            qsurf(:, nsrf) = 0.
394              frugs(:, nsrf) = 0.
395            IF (prt_level>9) THEN            DO j = 1, knon
396               PRINT *, 'USTAR = ', yustar               i = ni(j)
397            END IF               d_ts(i, nsrf) = y_d_ts(j)
398                 falbe(i, nsrf) = yalb(j)
399            !   iflag_pbl peut etre utilise comme longuer de melange               fsnow(i, nsrf) = snow(j)
400                 qsurf(i, nsrf) = yqsurf(j)
401            IF (iflag_pbl>=11) THEN               frugs(i, nsrf) = yz0_new(j)
402               CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &               fluxlat(i, nsrf) = yfluxlat(j)
403                    yu, yv, yteta, y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, &               IF (nsrf == is_oce) THEN
404                    iflag_pbl)                  rugmer(i) = yrugm(j)
405            ELSE                  frugs(i, nsrf) = yrugm(j)
406               CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, &               END IF
407                    yv, yteta, y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)               agesno(i, nsrf) = yagesno(j)
408                 fqcalving(i, nsrf) = y_fqcalving(j)
409                 ffonte(i, nsrf) = y_ffonte(j)
410                 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
411                 cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
412                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
413                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
414              END DO
415              IF (nsrf == is_ter) THEN
416                 qsol(ni(:knon)) = yqsol(:knon)
417              else IF (nsrf == is_lic) THEN
418                 DO j = 1, knon
419                    i = ni(j)
420                    run_off_lic_0(i) = y_run_off_lic_0(j)
421                 END DO
422            END IF            END IF
423    
424            ycoefm(1:knon, 1) = y_cd_m(1:knon)            ftsoil(:, :, nsrf) = 0.
425            ycoefh(1:knon, 1) = y_cd_h(1:knon)            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
           ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)  
           ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)  
        END IF  
   
        ! calculer la diffusion des vitesses "u" et "v"  
        CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &  
             ydelp, y_d_u, y_flux_u)  
        CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
             ydelp, y_d_v, y_flux_v)  
   
        ! pour le couplage  
        ytaux = y_flux_u(:, 1)  
        ytauy = y_flux_v(:, 1)  
   
        ! calculer la diffusion de "q" et de "h"  
        CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
             cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
             yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
             yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
             ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
             yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
             yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
             yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
             y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
             ytslab, y_seaice)  
   
        ! calculer la longueur de rugosite sur ocean  
        yrugm = 0.  
        IF (nsrf==is_oce) THEN  
           DO j = 1, knon  
              yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                   0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
              yrugm(j) = max(1.5E-05, yrugm(j))  
           END DO  
        END IF  
        DO j = 1, knon  
           y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
           y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
           yu1(j) = yu1(j)*ypct(j)  
           yv1(j) = yv1(j)*ypct(j)  
        END DO  
426    
        DO k = 1, klev  
427            DO j = 1, knon            DO j = 1, knon
428               i = ni(j)               i = ni(j)
429               ycoefh(j, k) = ycoefh(j, k)*ypct(j)               DO k = 1, klev
430               ycoefm(j, k) = ycoefm(j, k)*ypct(j)                  d_t(i, k) = d_t(i, k) + y_d_t(j, k)
431               y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
432               y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
433               !§§§ PB                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
434               flux_t(i, k, nsrf) = y_flux_t(j, k)               END DO
              flux_q(i, k, nsrf) = y_flux_q(j, k)  
              flux_u(i, k, nsrf) = y_flux_u(j, k)  
              flux_v(i, k, nsrf) = y_flux_v(j, k)  
              !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
              !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
              y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
              y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
              !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
              !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
435            END DO            END DO
        END DO  
436    
437         evap(:, nsrf) = -flux_q(:, 1, nsrf)            forall (k = 2:klev) coefh(ni(:knon), k) &
438                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
439    
440              ! diagnostic t, q a 2m et u, v a 10m
441    
        albe(:, nsrf) = 0.  
        alblw(:, nsrf) = 0.  
        snow(:, nsrf) = 0.  
        qsurf(:, nsrf) = 0.  
        rugos(:, nsrf) = 0.  
        fluxlat(:, nsrf) = 0.  
        DO j = 1, knon  
           i = ni(j)  
           d_ts(i, nsrf) = y_d_ts(j)  
           albe(i, nsrf) = yalb(j)  
           alblw(i, nsrf) = yalblw(j)  
           snow(i, nsrf) = ysnow(j)  
           qsurf(i, nsrf) = yqsurf(j)  
           rugos(i, nsrf) = yz0_new(j)  
           fluxlat(i, nsrf) = yfluxlat(j)  
           !$$$ pb         rugmer(i) = yrugm(j)  
           IF (nsrf==is_oce) THEN  
              rugmer(i) = yrugm(j)  
              rugos(i, nsrf) = yrugm(j)  
           END IF  
           !IM cf JLD ??  
           agesno(i, nsrf) = yagesno(j)  
           fqcalving(i, nsrf) = y_fqcalving(j)  
           ffonte(i, nsrf) = y_ffonte(j)  
           cdragh(i) = cdragh(i) + ycoefh(j, 1)  
           cdragm(i) = cdragm(i) + ycoefm(j, 1)  
           dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
           dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
           zu1(i) = zu1(i) + yu1(j)  
           zv1(i) = zv1(i) + yv1(j)  
        END DO  
        IF (nsrf==is_ter) THEN  
           DO j = 1, knon  
              i = ni(j)  
              qsol(i) = yqsol(j)  
           END DO  
        END IF  
        IF (nsrf==is_lic) THEN  
           DO j = 1, knon  
              i = ni(j)  
              run_off_lic_0(i) = y_run_off_lic_0(j)  
           END DO  
        END IF  
        !$$$ PB ajout pour soil  
        ftsoil(:, :, nsrf) = 0.  
        DO k = 1, nsoilmx  
442            DO j = 1, knon            DO j = 1, knon
443               i = ni(j)               i = ni(j)
444               ftsoil(i, k, nsrf) = ytsoil(j, k)               u1(j) = yu(j, 1) + y_d_u(j, 1)
445            END DO               v1(j) = yv(j, 1) + y_d_v(j, 1)
446         END DO               tair1(j) = yt(j, 1) + y_d_t(j, 1)
447                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
448                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
449                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
450                 tairsol(j) = yts(j) + y_d_ts(j)
451                 rugo1(j) = yrugos(j)
452                 IF (nsrf == is_oce) THEN
453                    rugo1(j) = frugs(i, nsrf)
454                 END IF
455                 psfce(j) = ypaprs(j, 1)
456                 patm(j) = ypplay(j, 1)
457    
458         DO j = 1, knon               qairsol(j) = yqsurf(j)
           i = ni(j)  
           DO k = 1, klev  
              d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
              d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
              !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
              !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
              d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
              d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
              !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
              !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
              zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
459            END DO            END DO
        END DO  
460    
461         !cc diagnostic t, q a 2m et u, v a 10m            CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, &
462                   zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, &
463         DO j = 1, knon                 yq10m, wind10m(:knon), ustar(:knon))
           i = ni(j)  
           uzon(j) = yu(j, 1) + y_d_u(j, 1)  
           vmer(j) = yv(j, 1) + y_d_v(j, 1)  
           tair1(j) = yt(j, 1) + y_d_t(j, 1)  
           qair1(j) = yq(j, 1) + y_d_q(j, 1)  
           zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
                1)))*(ypaprs(j, 1)-ypplay(j, 1))  
           tairsol(j) = yts(j) + y_d_ts(j)  
           rugo1(j) = yrugos(j)  
           IF (nsrf==is_oce) THEN  
              rugo1(j) = rugos(i, nsrf)  
           END IF  
           psfce(j) = ypaprs(j, 1)  
           patm(j) = ypplay(j, 1)  
   
           qairsol(j) = yqsurf(j)  
        END DO  
464    
465         CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &            DO j = 1, knon
466              tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &               i = ni(j)
467              yu10m, yustar)               t2m(i, nsrf) = yt2m(j)
468         !IM 081204 END               q2m(i, nsrf) = yq2m(j)
   
        DO j = 1, knon  
           i = ni(j)  
           t2m(i, nsrf) = yt2m(j)  
           q2m(i, nsrf) = yq2m(j)  
   
           ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
           u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
           v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
469    
470         END DO               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
471                      / sqrt(u1(j)**2 + v1(j)**2)
472                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
473                      / sqrt(u1(j)**2 + v1(j)**2)
474              END DO
475    
476         DO i = 1, knon            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
477            y_cd_h(i) = ycoefh(i, 1)                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
478            y_cd_m(i) = ycoefm(i, 1)                 yoliqcl, ycteicl, ypblt, ytherm, ylcl)
        END DO  
        CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
             y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
             ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
        DO j = 1, knon  
           i = ni(j)  
           pblh(i, nsrf) = ypblh(j)  
           plcl(i, nsrf) = ylcl(j)  
           capcl(i, nsrf) = ycapcl(j)  
           oliqcl(i, nsrf) = yoliqcl(j)  
           cteicl(i, nsrf) = ycteicl(j)  
           pblt(i, nsrf) = ypblt(j)  
           therm(i, nsrf) = ytherm(j)  
           trmb1(i, nsrf) = ytrmb1(j)  
           trmb2(i, nsrf) = ytrmb2(j)  
           trmb3(i, nsrf) = ytrmb3(j)  
        END DO  
479    
        DO j = 1, knon  
           DO k = 1, klev + 1  
              i = ni(j)  
              q2(i, k, nsrf) = yq2(j, k)  
           END DO  
        END DO  
        !IM "slab" ocean  
        IF (nsrf==is_oce) THEN  
480            DO j = 1, knon            DO j = 1, knon
              ! on projette sur la grille globale  
481               i = ni(j)               i = ni(j)
482               IF (pctsrf_new(i, is_oce)>epsfra) THEN               pblh(i, nsrf) = ypblh(j)
483                  flux_o(i) = y_flux_o(j)               plcl(i, nsrf) = ylcl(j)
484               ELSE               capcl(i, nsrf) = ycapcl(j)
485                  flux_o(i) = 0.               oliqcl(i, nsrf) = yoliqcl(j)
486               END IF               cteicl(i, nsrf) = ycteicl(j)
487                 pblt(i, nsrf) = ypblt(j)
488                 therm(i, nsrf) = ytherm(j)
489            END DO            END DO
        END IF  
490    
        IF (nsrf==is_sic) THEN  
491            DO j = 1, knon            DO j = 1, knon
492               i = ni(j)               DO k = 1, klev + 1
493               ! On pondère lorsque l'on fait le bilan au sol :                  i = ni(j)
494               ! flux_g(i) = y_flux_g(j)*ypct(j)                  q2(i, k, nsrf) = yq2(j, k)
495               IF (pctsrf_new(i, is_sic)>epsfra) THEN               END DO
                 flux_g(i) = y_flux_g(j)  
              ELSE  
                 flux_g(i) = 0.  
              END IF  
496            END DO            END DO
497           else
498         END IF            fsnow(:, nsrf) = 0.
499         !nsrf.EQ.is_sic                                                     end IF if_knon
500         IF (ocean=='slab  ') THEN      END DO loop_surface
           IF (nsrf==is_oce) THEN  
              tslab(1:klon) = ytslab(1:klon)  
              seaice(1:klon) = y_seaice(1:klon)  
              !nsrf                                                        
           END IF  
           !OCEAN                                                        
        END IF  
     END DO  
501    
502      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
503      ! A rajouter: conservation de l'albedo      frugs(:, is_oce) = rugmer
504        pctsrf(:, is_oce) = pctsrf_new_oce
505        pctsrf(:, is_sic) = pctsrf_new_sic
506    
507      rugos(:, is_oce) = rugmer      firstcal = .false.
     pctsrf = pctsrf_new  
508    
509    END SUBROUTINE clmain    END SUBROUTINE pbl_surface
510    
511  end module clmain_m  end module pbl_surface_m

Legend:
Removed from v.40  
changed lines
  Added in v.276

  ViewVC Help
Powered by ViewVC 1.1.21