--- trunk/Sources/phylmd/clmain.f 2016/03/21 15:36:26 186 +++ trunk/phylmd/pbl_surface.f 2018/07/12 14:49:20 276 @@ -1,17 +1,15 @@ -module clmain_m +module pbl_surface_m IMPLICIT NONE contains - SUBROUTINE clmain(dtime, itap, pctsrf, pctsrf_new, t, q, u, v, jour, rmu0, & - ts, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & - paprs, pplay, snow, qsurf, evap, falbe, fluxlat, rain_fall, snow_f, & - solsw, sollw, fder, rlat, rugos, debut, agesno, rugoro, d_t, d_q, d_u, & - d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, & - dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, capcl, & - oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, fqcalving, & - ffonte, run_off_lic_0) + SUBROUTINE pbl_surface(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, & + cdmmax, cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, & + fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, & + d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, & + q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, & + oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 @@ -22,73 +20,57 @@ ! ne tient pas compte de la diff\'erentiation des sous-fractions ! de sol. - ! Pour pouvoir extraire les coefficients d'\'echanges et le vent - ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh", - ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois - ! champs sur les quatre sous-surfaces du mod\`ele. - + use cdrag_m, only: cdrag use clqh_m, only: clqh use clvent_m, only: clvent - use coefkz_m, only: coefkz - use coefkzmin_m, only: coefkzmin - USE conf_gcm_m, ONLY: prt_level + use coef_diff_turb_m, only: coef_diff_turb + USE conf_gcm_m, ONLY: lmt_pas USE conf_phys_m, ONLY: iflag_pbl - USE dimphy, ONLY: klev, klon, zmasq + USE dimphy, ONLY: klev, klon USE dimsoil, ONLY: nsoilmx use hbtm_m, only: hbtm USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf + USE interfoce_lim_m, ONLY: interfoce_lim + use phyetat0_m, only: zmasq use stdlevvar_m, only: stdlevvar - USE suphec_m, ONLY: rd, rg, rkappa - use ustarhb_m, only: ustarhb - use vdif_kcay_m, only: vdif_kcay - use yamada4_m, only: yamada4 + USE suphec_m, ONLY: rd, rg + use time_phylmdz, only: itap REAL, INTENT(IN):: dtime ! interval du temps (secondes) - INTEGER, INTENT(IN):: itap ! numero du pas de temps - REAL, INTENT(inout):: pctsrf(klon, nbsrf) - ! la nouvelle repartition des surfaces sortie de l'interface - REAL, INTENT(out):: pctsrf_new(klon, nbsrf) + REAL, INTENT(inout):: pctsrf(klon, nbsrf) + ! tableau des pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) - REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) + REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse - INTEGER, INTENT(IN):: jour ! jour de l'annee en cours - REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin) + INTEGER, INTENT(IN):: julien ! jour de l'annee en cours + REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal + REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh - REAL, INTENT(IN):: ksta, ksta_ter - LOGICAL, INTENT(IN):: ok_kzmin REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction - REAL, INTENT(inout):: qsol(klon) + REAL, INTENT(inout):: qsol(:) ! (klon) ! column-density of water in soil, in kg m-2 - REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) + REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL snow(klon, nbsrf) + REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse REAL qsurf(klon, nbsrf) REAL evap(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) - - REAL fluxlat(klon, nbsrf) + REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) REAL, intent(in):: rain_fall(klon) - ! liquid water mass flux (kg/m2/s), positive down + ! liquid water mass flux (kg / m2 / s), positive down REAL, intent(in):: snow_f(klon) - ! solid water mass flux (kg/m2/s), positive down - - REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf) - REAL, intent(in):: fder(klon) - REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es + ! solid water mass flux (kg / m2 / s), positive down - REAL rugos(klon, nbsrf) - ! rugos----input-R- longeur de rugosite (en m) - - LOGICAL, INTENT(IN):: debut + REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) + REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -99,118 +81,95 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts" + REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol + + REAL, intent(out):: flux_t(klon, nbsrf) + ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers + ! le bas) à la surface - REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf) - ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) - ! (orientation positive vers le bas) - ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) - - REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf) - ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal - ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal + REAL, intent(out):: flux_q(klon, nbsrf) + ! flux de vapeur d'eau (kg / m2 / s) à la surface + + REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent (flux turbulent de vent) à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) - real q2(klon, klev+1, nbsrf) + real q2(klon, klev + 1, nbsrf) REAL, INTENT(out):: dflux_t(klon), dflux_q(klon) ! dflux_t derive du flux sensible ! dflux_q derive du flux latent - !IM "slab" ocean + ! IM "slab" ocean - REAL, intent(out):: ycoefh(klon, klev) - REAL, intent(out):: zu1(klon) - REAL zv1(klon) - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) - - ! Ionela Musat cf. Anne Mathieu : pbl, hbtm (Comme les autres - ! diagnostics on cumule dans physiq ce qui permet de sortir les - ! grandeurs par sous-surface) - REAL pblh(klon, nbsrf) - ! pblh------- HCL + REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev) + ! Pour pouvoir extraire les coefficients d'\'echange, le champ + ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de + ! ce champ sur les quatre sous-surfaces du mod\`ele. + + REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) + + REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf) + ! composantes du vent \`a 10m sans spirale d'Ekman + + ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm. + ! Comme les autres diagnostics on cumule dans physiq ce qui permet + ! de sortir les grandeurs par sous-surface. + REAL pblh(klon, nbsrf) ! height of planetary boundary layer REAL capcl(klon, nbsrf) REAL oliqcl(klon, nbsrf) REAL cteicl(klon, nbsrf) - REAL pblt(klon, nbsrf) - ! pblT------- T au nveau HCL + REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL REAL therm(klon, nbsrf) - REAL trmb1(klon, nbsrf) - ! trmb1-------deep_cape - REAL trmb2(klon, nbsrf) - ! trmb2--------inhibition - REAL trmb3(klon, nbsrf) - ! trmb3-------Point Omega REAL plcl(klon, nbsrf) REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf) ! ffonte----Flux thermique utilise pour fondre la neige ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la - ! hauteur de neige, en kg/m2/s + ! hauteur de neige, en kg / m2 / s REAL run_off_lic_0(klon) ! Local: + LOGICAL:: firstcal = .true. + + ! la nouvelle repartition des surfaces sortie de l'interface + REAL, save:: pctsrf_new_oce(klon) + REAL, save:: pctsrf_new_sic(klon) + REAL y_fqcalving(klon), y_ffonte(klon) real y_run_off_lic_0(klon) - REAL rugmer(klon) - REAL ytsoil(klon, nsoilmx) - - REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) + REAL yts(klon), ypct(klon), yz0_new(klon) + real yrugos(klon) ! longeur de rugosite (en m) REAL yalb(klon) - REAL yu1(klon), yv1(klon) - ! on rajoute en output yu1 et yv1 qui sont les vents dans - ! la premiere couche - REAL ysnow(klon), yqsurf(klon), yagesno(klon) - - real yqsol(klon) - ! column-density of water in soil, in kg m-2 - - REAL yrain_f(klon) - ! liquid water mass flux (kg/m2/s), positive down - - REAL ysnow_f(klon) - ! solid water mass flux (kg/m2/s), positive down - - REAL yfder(klon) + REAL snow(klon), yqsurf(klon), yagesno(klon) + real yqsol(klon) ! column-density of water in soil, in kg m-2 + REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down + REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down REAL yrugm(klon), yrads(klon), yrugoro(klon) - REAL yfluxlat(klon) - REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) - REAL y_flux_t(klon, klev), y_flux_q(klon, klev) - REAL y_flux_u(klon, klev), y_flux_v(klon, klev) + REAL y_flux_t(klon), y_flux_q(klon) + REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) - REAL coefh(klon, klev), coefm(klon, klev) + REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev) + real ycdragh(klon), ycdragm(klon) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) - REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev) - - REAL ycoefm0(klon, klev), ycoefh0(klon, klev) - - REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev) - REAL ykmm(klon, klev+1), ykmn(klon, klev+1) - REAL ykmq(klon, klev+1) - REAL yq2(klon, klev+1) - REAL q2diag(klon, klev+1) - - REAL u1lay(klon), v1lay(klon) + REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev) + REAL yq2(klon, klev + 1) REAL delp(klon, klev) INTEGER i, k, nsrf - INTEGER ni(klon), knon, j REAL pctsrf_pot(klon, nbsrf) ! "pourcentage potentiel" pour tenir compte des \'eventuelles ! apparitions ou disparitions de la glace de mer - REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola. - - REAL yt2m(klon), yq2m(klon), yu10m(klon) - REAL yustar(klon) + REAL yt2m(klon), yq2m(klon), wind10m(klon) + REAL ustar(klon) REAL yt10m(klon), yq10m(klon) REAL ypblh(klon) @@ -220,19 +179,13 @@ REAL ycteicl(klon) REAL ypblt(klon) REAL ytherm(klon) - REAL ytrmb1(klon) - REAL ytrmb2(klon) - REAL ytrmb3(klon) - REAL uzon(klon), vmer(klon) + REAL u1(klon), v1(klon) REAL tair1(klon), qair1(klon), tairsol(klon) REAL psfce(klon), patm(klon) REAL qairsol(klon), zgeo1(klon) REAL rugo1(klon) - - ! utiliser un jeu de fonctions simples - LOGICAL zxli - PARAMETER (zxli=.FALSE.) + REAL zgeop(klon, klev) !------------------------------------------------------------ @@ -240,15 +193,9 @@ DO k = 1, klev ! epaisseur de couche DO i = 1, klon - delp(i, k) = paprs(i, k) - paprs(i, k+1) + delp(i, k) = paprs(i, k) - paprs(i, k + 1) END DO END DO - DO i = 1, klon ! vent de la premiere couche - zx_alf1 = 1.0 - zx_alf2 = 1.0 - zx_alf1 - u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2 - v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2 - END DO ! Initialization: rugmer = 0. @@ -256,19 +203,11 @@ cdragm = 0. dflux_t = 0. dflux_q = 0. - zu1 = 0. - zv1 = 0. ypct = 0. - yts = 0. - ysnow = 0. yqsurf = 0. yrain_f = 0. ysnow_f = 0. - yfder = 0. yrugos = 0. - yu1 = 0. - yv1 = 0. - yrads = 0. ypaprs = 0. ypplay = 0. ydelp = 0. @@ -276,33 +215,35 @@ yv = 0. yt = 0. yq = 0. - pctsrf_new = 0. - y_flux_u = 0. - y_flux_v = 0. y_dflux_t = 0. y_dflux_q = 0. - ytsoil = 999999. yrugoro = 0. d_ts = 0. - yfluxlat = 0. flux_t = 0. flux_q = 0. flux_u = 0. flux_v = 0. + fluxlat = 0. d_t = 0. d_q = 0. d_u = 0. d_v = 0. - ycoefh = 0. + coefh = 0. ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique ! (\`a affiner) - pctsrf_pot = pctsrf + pctsrf_pot(:, is_ter) = pctsrf(:, is_ter) + pctsrf_pot(:, is_lic) = pctsrf(:, is_lic) pctsrf_pot(:, is_oce) = 1. - zmasq pctsrf_pot(:, is_sic) = 1. - zmasq + ! Tester si c'est le moment de lire le fichier: + if (mod(itap - 1, lmt_pas) == 0) then + CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic) + endif + ! Boucler sur toutes les sous-fractions du sol: loop_surface: DO nsrf = 1, nbsrf @@ -322,36 +263,24 @@ DO j = 1, knon i = ni(j) ypct(j) = pctsrf(i, nsrf) - yts(j) = ts(i, nsrf) - ysnow(j) = snow(i, nsrf) + yts(j) = ftsol(i, nsrf) + snow(j) = fsnow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) yalb(j) = falbe(i, nsrf) yrain_f(j) = rain_fall(i) ysnow_f(j) = snow_f(i) yagesno(j) = agesno(i, nsrf) - yfder(j) = fder(i) - yrugos(j) = rugos(i, nsrf) + yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) - yu1(j) = u1lay(i) - yv1(j) = v1lay(i) - yrads(j) = solsw(i, nsrf) + sollw(i, nsrf) - ypaprs(j, klev+1) = paprs(i, klev+1) + yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) + ypaprs(j, klev + 1) = paprs(i, klev + 1) y_run_off_lic_0(j) = run_off_lic_0(i) END DO ! For continent, copy soil water content - IF (nsrf == is_ter) THEN - yqsol(:knon) = qsol(ni(:knon)) - ELSE - yqsol = 0. - END IF + IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon)) - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO + ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) DO k = 1, klev DO j = 1, knon @@ -366,151 +295,122 @@ END DO END DO - ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & - yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + ! Calculer les géopotentiels de chaque couche: + + zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) & + + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1)) + + DO k = 2, klev + zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 & + * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) & + * (ypplay(:knon, k - 1) - ypplay(:knon, k)) + ENDDO + + CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), & + yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), & + yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), & + ycdragh(:knon)) + IF (iflag_pbl == 1) THEN - CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) - coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) - coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) - END IF + ycdragm(:knon) = max(ycdragm(:knon), 0.) + ycdragh(:knon) = max(ycdragh(:knon), 0.) + end IF - ! on met un seuil pour coefm et coefh + ! on met un seuil pour ycdragm et ycdragh IF (nsrf == is_oce) THEN - coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax) - coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax) - END IF - - IF (ok_kzmin) THEN - ! Calcul d'une diffusion minimale pour les conditions tres stables - CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, & - coefm(:knon, 1), ycoefm0, ycoefh0) - coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) - coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + ycdragm(:knon) = min(ycdragm(:knon), cdmmax) + ycdragh(:knon) = min(ycdragh(:knon), cdhmax) END IF - IF (iflag_pbl >= 3) THEN - ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et - ! Fr\'ed\'eric Hourdin - yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) & - + ypplay(:knon, 1))) & - * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg - DO k = 2, klev - yzlay(1:knon, k) = yzlay(1:knon, k-1) & - + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) & - / ypaprs(1:knon, k) & - * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg - END DO - DO k = 1, klev - yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) & - / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k)) - END DO - yzlev(1:knon, 1) = 0. - yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) & - - yzlay(:knon, klev - 1) - DO k = 2, klev - yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1)) - END DO + IF (iflag_pbl >= 6) then DO k = 1, klev + 1 DO j = 1, knon i = ni(j) yq2(j, k) = q2(i, k, nsrf) END DO END DO + end IF - CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar) - IF (prt_level > 9) PRINT *, 'USTAR = ', yustar - - ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange - - IF (iflag_pbl >= 11) THEN - CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, & - yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, & - iflag_pbl) - ELSE - CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, & - coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl) - END IF - - coefm(:knon, 2:) = ykmm(:knon, 2:klev) - coefh(:knon, 2:) = ykmn(:knon, 2:klev) - END IF - - ! calculer la diffusion des vitesses "u" et "v" - CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u) - CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v) + call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), & + ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), & + yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), & + ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :)) + + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & + ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & + y_flux_u(:knon)) + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & + ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), & + y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, itap, jour, debut, rlat, knon, nsrf, ni(:knon), & - pctsrf, ytsoil, yqsol, rmu0, yrugos, yrugoro, yu1, & - yv1, coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, & - yrads, yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, & - yfluxlat, pctsrf_new, yagesno(:knon), y_d_t, y_d_q, & - y_d_ts(:knon), yz0_new, y_flux_t, y_flux_q, y_dflux_t, & - y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) + CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & + ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & + yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), & + yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), & + yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, & + yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & + y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, & + y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. IF (nsrf == is_oce) THEN DO j = 1, knon - yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + & - 0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2)) + yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) & + / rg + 0.11 * 14E-6 & + / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2)) yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF DO j = 1, knon - y_dflux_t(j) = y_dflux_t(j)*ypct(j) - y_dflux_q(j) = y_dflux_q(j)*ypct(j) - yu1(j) = yu1(j)*ypct(j) - yv1(j) = yv1(j)*ypct(j) + y_dflux_t(j) = y_dflux_t(j) * ypct(j) + y_dflux_q(j) = y_dflux_q(j) * ypct(j) END DO DO k = 1, klev DO j = 1, knon i = ni(j) - coefh(j, k) = coefh(j, k)*ypct(j) - coefm(j, k) = coefm(j, k)*ypct(j) - y_d_t(j, k) = y_d_t(j, k)*ypct(j) - y_d_q(j, k) = y_d_q(j, k)*ypct(j) - flux_t(i, k, nsrf) = y_flux_t(j, k) - flux_q(i, k, nsrf) = y_flux_q(j, k) - flux_u(i, k, nsrf) = y_flux_u(j, k) - flux_v(i, k, nsrf) = y_flux_v(j, k) - y_d_u(j, k) = y_d_u(j, k)*ypct(j) - y_d_v(j, k) = y_d_v(j, k)*ypct(j) + y_d_t(j, k) = y_d_t(j, k) * ypct(j) + y_d_q(j, k) = y_d_q(j, k) * ypct(j) + y_d_u(j, k) = y_d_u(j, k) * ypct(j) + y_d_v(j, k) = y_d_v(j, k) * ypct(j) END DO END DO - evap(:, nsrf) = -flux_q(:, 1, nsrf) + flux_t(ni(:knon), nsrf) = y_flux_t(:knon) + flux_q(ni(:knon), nsrf) = y_flux_q(:knon) + flux_u(ni(:knon), nsrf) = y_flux_u(:knon) + flux_v(ni(:knon), nsrf) = y_flux_v(:knon) + + evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. - snow(:, nsrf) = 0. + fsnow(:, nsrf) = 0. qsurf(:, nsrf) = 0. - rugos(:, nsrf) = 0. - fluxlat(:, nsrf) = 0. + frugs(:, nsrf) = 0. DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) falbe(i, nsrf) = yalb(j) - snow(i, nsrf) = ysnow(j) + fsnow(i, nsrf) = snow(j) qsurf(i, nsrf) = yqsurf(j) - rugos(i, nsrf) = yz0_new(j) + frugs(i, nsrf) = yz0_new(j) fluxlat(i, nsrf) = yfluxlat(j) IF (nsrf == is_oce) THEN rugmer(i) = yrugm(j) - rugos(i, nsrf) = yrugm(j) + frugs(i, nsrf) = yrugm(j) END IF agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + coefh(j, 1) - cdragm(i) = cdragm(i) + coefm(j, 1) + cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j) + cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j) dflux_t(i) = dflux_t(i) + y_dflux_t(j) dflux_q(i) = dflux_q(i) + y_dflux_q(j) - zu1(i) = zu1(i) + yu1(j) - zv1(i) = zv1(i) + yv1(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -522,12 +422,7 @@ END IF ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :) DO j = 1, knon i = ni(j) @@ -536,24 +431,26 @@ d_q(i, k) = d_q(i, k) + y_d_q(j, k) d_u(i, k) = d_u(i, k) + y_d_u(j, k) d_v(i, k) = d_v(i, k) + y_d_v(j, k) - ycoefh(i, k) = ycoefh(i, k) + coefh(j, k) END DO END DO + forall (k = 2:klev) coefh(ni(:knon), k) & + = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon) + ! diagnostic t, q a 2m et u, v a 10m DO j = 1, knon i = ni(j) - uzon(j) = yu(j, 1) + y_d_u(j, 1) - vmer(j) = yv(j, 1) + y_d_v(j, 1) + u1(j) = yu(j, 1) + y_d_u(j, 1) + v1(j) = yv(j, 1) + y_d_v(j, 1) tair1(j) = yt(j, 1) + y_d_t(j, 1) qair1(j) = yq(j, 1) + y_d_q(j, 1) - zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, & - 1)))*(ypaprs(j, 1)-ypplay(j, 1)) + zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, & + 1))) * (ypaprs(j, 1)-ypplay(j, 1)) tairsol(j) = yts(j) + y_d_ts(j) rugo1(j) = yrugos(j) IF (nsrf == is_oce) THEN - rugo1(j) = rugos(i, nsrf) + rugo1(j) = frugs(i, nsrf) END IF psfce(j) = ypaprs(j, 1) patm(j) = ypplay(j, 1) @@ -561,24 +458,24 @@ qairsol(j) = yqsurf(j) END DO - CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, & - zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, & - yt10m, yq10m, yu10m, yustar) + CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, & + zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, & + yq10m, wind10m(:knon), ustar(:knon)) DO j = 1, knon i = ni(j) t2m(i, nsrf) = yt2m(j) q2m(i, nsrf) = yq2m(j) - ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman - u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) - v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - + u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) & + / sqrt(u1(j)**2 + v1(j)**2) + v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) & + / sqrt(u1(j)**2 + v1(j)**2) END DO - CALL hbtm(knon, ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t, & - y_flux_q, yu, yv, yt, yq, ypblh(:knon), ycapcl, yoliqcl, & - ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) + CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), & + y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & + yoliqcl, ycteicl, ypblt, ytherm, ylcl) DO j = 1, knon i = ni(j) @@ -589,9 +486,6 @@ cteicl(i, nsrf) = ycteicl(j) pblt(i, nsrf) = ypblt(j) therm(i, nsrf) = ytherm(j) - trmb1(i, nsrf) = ytrmb1(j) - trmb2(i, nsrf) = ytrmb2(j) - trmb3(i, nsrf) = ytrmb3(j) END DO DO j = 1, knon @@ -600,14 +494,18 @@ q2(i, k, nsrf) = yq2(j, k) END DO END DO + else + fsnow(:, nsrf) = 0. end IF if_knon END DO loop_surface ! On utilise les nouvelles surfaces + frugs(:, is_oce) = rugmer + pctsrf(:, is_oce) = pctsrf_new_oce + pctsrf(:, is_sic) = pctsrf_new_sic - rugos(:, is_oce) = rugmer - pctsrf = pctsrf_new + firstcal = .false. - END SUBROUTINE clmain + END SUBROUTINE pbl_surface -end module clmain_m +end module pbl_surface_m