--- trunk/phylmd/clmain.f 2018/02/05 10:39:38 254 +++ trunk/phylmd/Interface_surf/pbl_surface.f 2018/09/27 16:29:06 310 @@ -1,18 +1,20 @@ -module clmain_m +module pbl_surface_m IMPLICIT NONE contains - SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & - cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, & - rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, & - d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, & - dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, & - oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0) + SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & + cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, falbe, fluxlat, & + rain_fall, snow_fall, frugs, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, & + flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, & + coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, & + therm, plcl, fqcalving, ffonte, run_off_lic_0, albsol, sollw, solsw, & + tsol) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 - ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 + ! Author: Z. X. Li (LMD/CNRS) + ! Date: Aug. 18th, 1993 ! Objet : interface de couche limite (diffusion verticale) ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul @@ -20,32 +22,35 @@ ! ne tient pas compte de la diff\'erentiation des sous-fractions ! de sol. - use clcdrag_m, only: clcdrag + use cdrag_m, only: cdrag use clqh_m, only: clqh use clvent_m, only: clvent use coef_diff_turb_m, only: coef_diff_turb USE conf_gcm_m, ONLY: lmt_pas USE conf_phys_m, ONLY: iflag_pbl - USE dimphy, ONLY: klev, klon, zmasq + USE dimphy, ONLY: klev, klon USE dimsoil, ONLY: nsoilmx use hbtm_m, only: hbtm + USE histwrite_phy_m, ONLY: histwrite_phy USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf USE interfoce_lim_m, ONLY: interfoce_lim + use phyetat0_m, only: zmasq use stdlevvar_m, only: stdlevvar - USE suphec_m, ONLY: rd, rg + USE suphec_m, ONLY: rd, rg, rsigma use time_phylmdz, only: itap - REAL, INTENT(IN):: dtime ! interval du temps (secondes) - REAL, INTENT(inout):: pctsrf(klon, nbsrf) - ! tableau des pourcentages de surface de chaque maille + ! pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse INTEGER, INTENT(IN):: julien ! jour de l'annee en cours REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K) + + REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) + ! skin temperature of surface fraction, in K + REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf) @@ -55,27 +60,24 @@ ! column-density of water in soil, in kg m-2 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa) - REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) + REAL, INTENT(IN):: play(klon, klev) ! pression au milieu de couche (Pa) REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse - REAL qsurf(klon, nbsrf) - REAL evap(klon, nbsrf) + REAL, INTENT(inout):: fqsurf(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) REAL, intent(in):: rain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down - REAL, intent(in):: snow_f(klon) + REAL, intent(in):: snow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down - REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) - REAL d_t(klon, klev), d_q(klon, klev) - ! d_t------output-R- le changement pour "t" - ! d_q------output-R- le changement pour "q" + REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev) + ! changement pour t et q REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" @@ -83,22 +85,21 @@ REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol REAL, intent(out):: flux_t(klon, nbsrf) - ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers - ! le bas) à la surface + ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive + ! vers le bas) à la surface REAL, intent(out):: flux_q(klon, nbsrf) ! flux de vapeur d'eau (kg / m2 / s) à la surface - REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + REAL, intent(out):: flux_u(:, :), flux_v(:, :) ! (klon, nbsrf) ! tension du vent (flux turbulent de vent) à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev + 1, nbsrf) - REAL, INTENT(out):: dflux_t(klon), dflux_q(klon) - ! dflux_t derive du flux sensible - ! dflux_q derive du flux latent - ! IM "slab" ocean + ! Ocean slab: + REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible + REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev) ! Pour pouvoir extraire les coefficients d'\'echange, le champ @@ -120,32 +121,47 @@ REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL REAL therm(klon, nbsrf) REAL plcl(klon, nbsrf) - REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf) - ! ffonte----Flux thermique utilise pour fondre la neige - ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la - ! hauteur de neige, en kg / m2 / s - REAL run_off_lic_0(klon) + + REAL, intent(out):: fqcalving(klon, nbsrf) + ! flux d'eau "perdue" par la surface et necessaire pour limiter la + ! hauteur de neige, en kg / m2 / s + + real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige + REAL, intent(inout):: run_off_lic_0(:) ! (klon) + + REAL, intent(out):: albsol(:) ! (klon) + ! albedo du sol total, visible, moyen par maille + + REAL, intent(in):: sollw(:) ! (klon) + ! surface net downward longwave flux, in W m-2 + + REAL, intent(in):: solsw(:) ! (klon) + ! surface net downward shortwave flux, in W m-2 + + REAL, intent(in):: tsol(:) ! (klon) ! Local: - LOGICAL:: firstcal = .true. + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface ! la nouvelle repartition des surfaces sortie de l'interface REAL, save:: pctsrf_new_oce(klon) REAL, save:: pctsrf_new_sic(klon) REAL y_fqcalving(klon), y_ffonte(klon) - real y_run_off_lic_0(klon) + real y_run_off_lic_0(klon), y_run_off_lic(klon) + REAL run_off_lic(klon) ! ruissellement total REAL rugmer(klon) REAL ytsoil(klon, nsoilmx) - REAL yts(klon), ypct(klon), yz0_new(klon) - real yrugos(klon) ! longeur de rugosite (en m) + REAL yts(klon), ypctsrf(klon), yz0_new(klon) + real yrugos(klon) ! longueur de rugosite (en m) REAL yalb(klon) REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 - REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down - REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down - REAL yrugm(klon), yrads(klon), yrugoro(klon) + REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down + REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down + REAL yrugm(klon), radsol(klon), yrugoro(klon) REAL yfluxlat(klon) REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) @@ -181,13 +197,23 @@ REAL u1(klon), v1(klon) REAL tair1(klon), qair1(klon), tairsol(klon) REAL psfce(klon), patm(klon) - - REAL qairsol(klon), zgeo1(klon) + REAL zgeo1(klon) REAL rugo1(klon) REAL zgeop(klon, klev) !------------------------------------------------------------ + albsol = sum(falbe * pctsrf, dim = 2) + + ! R\'epartition sous maille des flux longwave et shortwave + ! R\'epartition du longwave par sous-surface lin\'earis\'ee + + forall (nsrf = 1:nbsrf) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 & + * (tsol - ftsol(:, nsrf)) + fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) + END forall + ytherm = 0. DO k = 1, klev ! epaisseur de couche @@ -202,20 +228,10 @@ cdragm = 0. dflux_t = 0. dflux_q = 0. - ypct = 0. - yqsurf = 0. - yrain_f = 0. - ysnow_f = 0. yrugos = 0. ypaprs = 0. ypplay = 0. ydelp = 0. - yu = 0. - yv = 0. - yt = 0. - yq = 0. - y_dflux_t = 0. - y_dflux_q = 0. yrugoro = 0. d_ts = 0. flux_t = 0. @@ -228,10 +244,12 @@ d_u = 0. d_v = 0. coefh = 0. + fqcalving = 0. + run_off_lic = 0. ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique - ! (\`a affiner) + ! (\`a affiner). pctsrf_pot(:, is_ter) = pctsrf(:, is_ter) pctsrf_pot(:, is_lic) = pctsrf(:, is_lic) @@ -246,9 +264,11 @@ ! Boucler sur toutes les sous-fractions du sol: loop_surface: DO nsrf = 1, nbsrf - ! Chercher les indices : + ! Define ni and knon: + ni = 0 knon = 0 + DO i = 1, klon ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces ! "potentielles" @@ -259,22 +279,19 @@ END DO if_knon: IF (knon /= 0) then - DO j = 1, knon - i = ni(j) - ypct(j) = pctsrf(i, nsrf) - yts(j) = ftsol(i, nsrf) - snow(j) = fsnow(i, nsrf) - yqsurf(j) = qsurf(i, nsrf) - yalb(j) = falbe(i, nsrf) - yrain_f(j) = rain_fall(i) - ysnow_f(j) = snow_f(i) - yagesno(j) = agesno(i, nsrf) - yrugos(j) = frugs(i, nsrf) - yrugoro(j) = rugoro(i) - yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) - ypaprs(j, klev + 1) = paprs(i, klev + 1) - y_run_off_lic_0(j) = run_off_lic_0(i) - END DO + ypctsrf(:knon) = pctsrf(ni(:knon), nsrf) + yts(:knon) = ftsol(ni(:knon), nsrf) + snow(:knon) = fsnow(ni(:knon), nsrf) + yqsurf(:knon) = fqsurf(ni(:knon), nsrf) + yalb(:knon) = falbe(ni(:knon), nsrf) + yrain_fall(:knon) = rain_fall(ni(:knon)) + ysnow_fall(:knon) = snow_fall(ni(:knon)) + yagesno(:knon) = agesno(ni(:knon), nsrf) + yrugos(:knon) = frugs(ni(:knon), nsrf) + yrugoro(:knon) = rugoro(ni(:knon)) + radsol(:knon) = fsolsw(ni(:knon), nsrf) + fsollw(ni(:knon), nsrf) + ypaprs(:knon, klev + 1) = paprs(ni(:knon), klev + 1) + y_run_off_lic_0(:knon) = run_off_lic_0(ni(:knon)) ! For continent, copy soil water content IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon)) @@ -285,7 +302,7 @@ DO j = 1, knon i = ni(j) ypaprs(j, k) = paprs(i, k) - ypplay(j, k) = pplay(i, k) + ypplay(j, k) = play(i, k) ydelp(j, k) = delp(i, k) yu(j, k) = u(i, k) yv(j, k) = v(i, k) @@ -305,9 +322,10 @@ * (ypplay(:knon, k - 1) - ypplay(:knon, k)) ENDDO - CALL clcdrag(nsrf, yu(:knon, 1), yv(:knon, 1), yt(:knon, 1), & - yq(:knon, 1), zgeop(:knon, 1), yts(:knon), yqsurf(:knon), & - yrugos(:knon), ycdragm(:knon), ycdragh(:knon)) + CALL cdrag(nsrf, sqrt(yu(:knon, 1)**2 + yv(:knon, 1)**2), & + yt(:knon, 1), yq(:knon, 1), zgeop(:knon, 1), ypaprs(:knon, 1), & + yts(:knon), yqsurf(:knon), yrugos(:knon), ycdragm(:knon), & + ycdragh(:knon)) IF (iflag_pbl == 1) THEN ycdragm(:knon) = max(ycdragm(:knon), 0.) @@ -320,42 +338,37 @@ ycdragh(:knon) = min(ycdragh(:knon), cdhmax) END IF - IF (iflag_pbl >= 6) then - DO k = 1, klev + 1 - DO j = 1, knon - i = ni(j) - yq2(j, k) = q2(i, k, nsrf) - END DO - END DO - end IF - - call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), & + IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf) + call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), & ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), & yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), & ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :)) - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & y_flux_u(:knon)) - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), & y_flux_v(:knon)) - ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & - ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & - yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), & - yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), & - yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, & - yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & - y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & - y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, & - y_run_off_lic_0) + CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), & + mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), & + yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), & + yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), & + ydelp(:knon, :), radsol(:knon), yalb(:knon), snow(:knon), & + yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), & + yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), & + y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), & + yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), & + y_ffonte(:knon), y_run_off_lic_0(:knon), y_run_off_lic(:knon)) ! calculer la longueur de rugosite sur ocean + yrugm = 0. + IF (nsrf == is_oce) THEN DO j = 1, knon yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) & @@ -364,18 +377,14 @@ yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF - DO j = 1, knon - y_dflux_t(j) = y_dflux_t(j) * ypct(j) - y_dflux_q(j) = y_dflux_q(j) * ypct(j) - END DO DO k = 1, klev DO j = 1, knon i = ni(j) - y_d_t(j, k) = y_d_t(j, k) * ypct(j) - y_d_q(j, k) = y_d_q(j, k) * ypct(j) - y_d_u(j, k) = y_d_u(j, k) * ypct(j) - y_d_v(j, k) = y_d_v(j, k) * ypct(j) + y_d_t(j, k) = y_d_t(j, k) * ypctsrf(j) + y_d_q(j, k) = y_d_q(j, k) * ypctsrf(j) + y_d_u(j, k) = y_d_u(j, k) * ypctsrf(j) + y_d_v(j, k) = y_d_v(j, k) * ypctsrf(j) END DO END DO @@ -384,18 +393,16 @@ flux_u(ni(:knon), nsrf) = y_flux_u(:knon) flux_v(ni(:knon), nsrf) = y_flux_v(:knon) - evap(:, nsrf) = -flux_q(:, nsrf) - falbe(:, nsrf) = 0. fsnow(:, nsrf) = 0. - qsurf(:, nsrf) = 0. + fqsurf(:, nsrf) = 0. frugs(:, nsrf) = 0. DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) falbe(i, nsrf) = yalb(j) fsnow(i, nsrf) = snow(j) - qsurf(i, nsrf) = yqsurf(j) + fqsurf(i, nsrf) = yqsurf(j) frugs(i, nsrf) = yz0_new(j) fluxlat(i, nsrf) = yfluxlat(j) IF (nsrf == is_oce) THEN @@ -405,10 +412,10 @@ agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j) - cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j) - dflux_t(i) = dflux_t(i) + y_dflux_t(j) - dflux_q(i) = dflux_q(i) + y_dflux_q(j) + cdragh(i) = cdragh(i) + ycdragh(j) * ypctsrf(j) + cdragm(i) = cdragm(i) + ycdragm(j) * ypctsrf(j) + dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypctsrf(j) + dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypctsrf(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -416,6 +423,7 @@ DO j = 1, knon i = ni(j) run_off_lic_0(i) = y_run_off_lic_0(j) + run_off_lic(i) = y_run_off_lic(j) END DO END IF @@ -433,7 +441,7 @@ END DO forall (k = 2:klev) coefh(ni(:knon), k) & - = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon) + = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypctsrf(:knon) ! diagnostic t, q a 2m et u, v a 10m @@ -452,13 +460,11 @@ END IF psfce(j) = ypaprs(j, 1) patm(j) = ypplay(j, 1) - - qairsol(j) = yqsurf(j) END DO - CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), & - qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, & - yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon)) + CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, & + zgeo1, tairsol, yqsurf(:knon), rugo1, psfce, patm, yt2m, yq2m, & + yt10m, yq10m, wind10m(:knon), ustar(:knon)) DO j = 1, knon i = ni(j) @@ -472,8 +478,9 @@ END DO CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), & - y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & - yoliqcl, ycteicl, ypblt, ytherm, ylcl) + y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), & + yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, & + ytherm, ylcl) DO j = 1, knon i = ni(j) @@ -486,12 +493,7 @@ therm(i, nsrf) = ytherm(j) END DO - DO j = 1, knon - DO k = 1, klev + 1 - i = ni(j) - q2(i, k, nsrf) = yq2(j, k) - END DO - END DO + IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :) else fsnow(:, nsrf) = 0. end IF if_knon @@ -502,8 +504,8 @@ pctsrf(:, is_oce) = pctsrf_new_oce pctsrf(:, is_sic) = pctsrf_new_sic - firstcal = .false. + CALL histwrite_phy("run_off_lic", run_off_lic) - END SUBROUTINE clmain + END SUBROUTINE pbl_surface -end module clmain_m +end module pbl_surface_m