--- trunk/phylmd/pbl_surface.f 2018/07/12 14:49:20 276 +++ trunk/phylmd/Interface_surf/pbl_surface.f 2018/09/11 11:08:38 305 @@ -4,15 +4,16 @@ contains - SUBROUTINE pbl_surface(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, & - cdmmax, cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, & - fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, & - d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, & - q2, dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, & + SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & + cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, falbe, fluxlat, & + rain_fall, snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, & + d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, & + dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, & oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 - ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 + ! Author: Z. X. Li (LMD/CNRS) + ! Date: Aug. 18th, 1993 ! Objet : interface de couche limite (diffusion verticale) ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul @@ -29,6 +30,7 @@ USE dimphy, ONLY: klev, klon USE dimsoil, ONLY: nsoilmx use hbtm_m, only: hbtm + USE histwrite_phy_m, ONLY: histwrite_phy USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf USE interfoce_lim_m, ONLY: interfoce_lim use phyetat0_m, only: zmasq @@ -36,8 +38,6 @@ USE suphec_m, ONLY: rd, rg use time_phylmdz, only: itap - REAL, INTENT(IN):: dtime ! interval du temps (secondes) - REAL, INTENT(inout):: pctsrf(klon, nbsrf) ! tableau des pourcentages de surface de chaque maille @@ -58,15 +58,14 @@ REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse - REAL qsurf(klon, nbsrf) - REAL evap(klon, nbsrf) + REAL, INTENT(inout):: qsurf(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) REAL, intent(in):: rain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down - REAL, intent(in):: snow_f(klon) + REAL, intent(in):: snow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) @@ -74,9 +73,8 @@ real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) - REAL d_t(klon, klev), d_q(klon, klev) - ! d_t------output-R- le changement pour "t" - ! d_q------output-R- le changement pour "q" + REAL, intent(out):: d_t(:, :), d_q(:, :) ! (klon, klev) + ! changement pour t et q REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" @@ -84,8 +82,8 @@ REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol REAL, intent(out):: flux_t(klon, nbsrf) - ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers - ! le bas) à la surface + ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive + ! vers le bas) à la surface REAL, intent(out):: flux_q(klon, nbsrf) ! flux de vapeur d'eau (kg / m2 / s) à la surface @@ -96,10 +94,9 @@ REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev + 1, nbsrf) - REAL, INTENT(out):: dflux_t(klon), dflux_q(klon) - ! dflux_t derive du flux sensible - ! dflux_q derive du flux latent - ! IM "slab" ocean + ! Ocean slab: + REAL, INTENT(out):: dflux_t(klon) ! derive du flux sensible + REAL, INTENT(out):: dflux_q(klon) ! derive du flux latent REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev) ! Pour pouvoir extraire les coefficients d'\'echange, le champ @@ -121,31 +118,32 @@ REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL REAL therm(klon, nbsrf) REAL plcl(klon, nbsrf) - REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf) - ! ffonte----Flux thermique utilise pour fondre la neige - ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la - ! hauteur de neige, en kg / m2 / s - REAL run_off_lic_0(klon) - ! Local: + REAL, intent(out):: fqcalving(klon, nbsrf) + ! flux d'eau "perdue" par la surface et necessaire pour limiter la + ! hauteur de neige, en kg / m2 / s - LOGICAL:: firstcal = .true. + real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige + REAL, intent(inout):: run_off_lic_0(:) ! (klon) + + ! Local: ! la nouvelle repartition des surfaces sortie de l'interface REAL, save:: pctsrf_new_oce(klon) REAL, save:: pctsrf_new_sic(klon) REAL y_fqcalving(klon), y_ffonte(klon) - real y_run_off_lic_0(klon) + real y_run_off_lic_0(klon), y_run_off_lic(klon) + REAL run_off_lic(klon) ! ruissellement total REAL rugmer(klon) REAL ytsoil(klon, nsoilmx) REAL yts(klon), ypct(klon), yz0_new(klon) - real yrugos(klon) ! longeur de rugosite (en m) + real yrugos(klon) ! longueur de rugosite (en m) REAL yalb(klon) REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 - REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down - REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down + REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down + REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down REAL yrugm(klon), yrads(klon), yrugoro(klon) REAL yfluxlat(klon) REAL y_d_ts(klon) @@ -182,8 +180,7 @@ REAL u1(klon), v1(klon) REAL tair1(klon), qair1(klon), tairsol(klon) REAL psfce(klon), patm(klon) - - REAL qairsol(klon), zgeo1(klon) + REAL zgeo1(klon) REAL rugo1(klon) REAL zgeop(klon, klev) @@ -204,19 +201,10 @@ dflux_t = 0. dflux_q = 0. ypct = 0. - yqsurf = 0. - yrain_f = 0. - ysnow_f = 0. yrugos = 0. ypaprs = 0. ypplay = 0. ydelp = 0. - yu = 0. - yv = 0. - yt = 0. - yq = 0. - y_dflux_t = 0. - y_dflux_q = 0. yrugoro = 0. d_ts = 0. flux_t = 0. @@ -229,10 +217,12 @@ d_u = 0. d_v = 0. coefh = 0. + fqcalving = 0. + run_off_lic = 0. ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique - ! (\`a affiner) + ! (\`a affiner). pctsrf_pot(:, is_ter) = pctsrf(:, is_ter) pctsrf_pot(:, is_lic) = pctsrf(:, is_lic) @@ -247,9 +237,11 @@ ! Boucler sur toutes les sous-fractions du sol: loop_surface: DO nsrf = 1, nbsrf - ! Chercher les indices : + ! Define ni and knon: + ni = 0 knon = 0 + DO i = 1, klon ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces ! "potentielles" @@ -267,8 +259,8 @@ snow(j) = fsnow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) yalb(j) = falbe(i, nsrf) - yrain_f(j) = rain_fall(i) - ysnow_f(j) = snow_f(i) + yrain_fall(j) = rain_fall(i) + ysnow_fall(j) = snow_fall(i) yagesno(j) = agesno(i, nsrf) yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) @@ -322,42 +314,37 @@ ycdragh(:knon) = min(ycdragh(:knon), cdhmax) END IF - IF (iflag_pbl >= 6) then - DO k = 1, klev + 1 - DO j = 1, knon - i = ni(j) - yq2(j, k) = q2(i, k, nsrf) - END DO - END DO - end IF - - call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs(:knon, :), & + IF (iflag_pbl >= 6) yq2(:knon, :) = q2(ni(:knon), :, nsrf) + call coef_diff_turb(nsrf, ni(:knon), ypaprs(:knon, :), & ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), & yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), & ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :)) - - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + + CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & y_flux_u(:knon)) - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), & y_flux_v(:knon)) - ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & - ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & - yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), & - yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), & - yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, & - yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & - y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & - y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, & - y_run_off_lic_0) + CALL clqh(julien, nsrf, ni(:knon), ytsoil(:knon, :), yqsol(:knon), & + mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), & + yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), & + yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), & + ydelp(:knon, :), yrads(:knon), yalb(:knon), snow(:knon), & + yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), & + yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), & + y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), & + yz0_new(:knon), y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving(:knon), & + y_ffonte(:knon), y_run_off_lic_0(:knon), y_run_off_lic(:knon)) ! calculer la longueur de rugosite sur ocean + yrugm = 0. + IF (nsrf == is_oce) THEN DO j = 1, knon yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) & @@ -366,10 +353,6 @@ yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF - DO j = 1, knon - y_dflux_t(j) = y_dflux_t(j) * ypct(j) - y_dflux_q(j) = y_dflux_q(j) * ypct(j) - END DO DO k = 1, klev DO j = 1, knon @@ -386,8 +369,6 @@ flux_u(ni(:knon), nsrf) = y_flux_u(:knon) flux_v(ni(:knon), nsrf) = y_flux_v(:knon) - evap(:, nsrf) = -flux_q(:, nsrf) - falbe(:, nsrf) = 0. fsnow(:, nsrf) = 0. qsurf(:, nsrf) = 0. @@ -409,8 +390,8 @@ ffonte(i, nsrf) = y_ffonte(j) cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j) cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j) - dflux_t(i) = dflux_t(i) + y_dflux_t(j) - dflux_q(i) = dflux_q(i) + y_dflux_q(j) + dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypct(j) + dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypct(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -418,6 +399,7 @@ DO j = 1, knon i = ni(j) run_off_lic_0(i) = y_run_off_lic_0(j) + run_off_lic(i) = y_run_off_lic(j) END DO END IF @@ -454,13 +436,11 @@ END IF psfce(j) = ypaprs(j, 1) patm(j) = ypplay(j, 1) - - qairsol(j) = yqsurf(j) END DO CALL stdlevvar(nsrf, u1(:knon), v1(:knon), tair1(:knon), qair1, & - zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, & - yq10m, wind10m(:knon), ustar(:knon)) + zgeo1, tairsol, yqsurf(:knon), rugo1, psfce, patm, yt2m, yq2m, & + yt10m, yq10m, wind10m(:knon), ustar(:knon)) DO j = 1, knon i = ni(j) @@ -474,8 +454,9 @@ END DO CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), & - y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & - yoliqcl, ycteicl, ypblt, ytherm, ylcl) + y_flux_q(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), & + yq(:knon, :), ypblh(:knon), ycapcl, yoliqcl, ycteicl, ypblt, & + ytherm, ylcl) DO j = 1, knon i = ni(j) @@ -488,12 +469,7 @@ therm(i, nsrf) = ytherm(j) END DO - DO j = 1, knon - DO k = 1, klev + 1 - i = ni(j) - q2(i, k, nsrf) = yq2(j, k) - END DO - END DO + IF (iflag_pbl >= 6) q2(ni(:knon), :, nsrf) = yq2(:knon, :) else fsnow(:, nsrf) = 0. end IF if_knon @@ -504,7 +480,7 @@ pctsrf(:, is_oce) = pctsrf_new_oce pctsrf(:, is_sic) = pctsrf_new_sic - firstcal = .false. + CALL histwrite_phy("run_off_lic", run_off_lic) END SUBROUTINE pbl_surface