--- trunk/phylmd/Interface_surf/pbl_surface.f 2018/09/11 11:08:38 305 +++ trunk/phylmd/Interface_surf/pbl_surface.f 2019/02/06 15:58:03 324 @@ -5,11 +5,12 @@ contains SUBROUTINE pbl_surface(pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & - cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, falbe, fluxlat, & - rain_fall, snow_fall, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, & - d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, & - dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, & - oliqcl, cteicl, pblt, therm, plcl, fqcalving, ffonte, run_off_lic_0) + cdhmax, ftsoil, qsol, paprs, play, fsnow, fqsurf, falbe, fluxlat, & + rain_fall, snow_fall, frugs, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, & + flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, & + coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, & + therm, plcl, fqcalving, ffonte, run_off_lic_0, albsol, sollw, solsw, & + tsol) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS) @@ -33,20 +34,23 @@ USE histwrite_phy_m, ONLY: histwrite_phy USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf USE interfoce_lim_m, ONLY: interfoce_lim - use phyetat0_m, only: zmasq + use phyetat0_m, only: masque use stdlevvar_m, only: stdlevvar - USE suphec_m, ONLY: rd, rg + USE suphec_m, ONLY: rd, rg, rsigma use time_phylmdz, only: itap REAL, INTENT(inout):: pctsrf(klon, nbsrf) - ! tableau des pourcentages de surface de chaque maille + ! pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse INTEGER, INTENT(IN):: julien ! jour de l'annee en cours REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K) + + REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) + ! skin temperature of surface fraction, in K + REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf) @@ -56,11 +60,13 @@ ! column-density of water in soil, in kg m-2 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa) - REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) + REAL, INTENT(IN):: play(klon, klev) ! pression au milieu de couche (Pa) REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse - REAL, INTENT(inout):: qsurf(klon, nbsrf) + REAL, INTENT(inout):: fqsurf(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) + REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) + ! flux de chaleur latente, en W m-2 REAL, intent(in):: rain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down @@ -68,7 +74,6 @@ REAL, intent(in):: snow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down - REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -85,10 +90,10 @@ ! flux de chaleur sensible (c_p T) (W / m2) (orientation positive ! vers le bas) à la surface - REAL, intent(out):: flux_q(klon, nbsrf) + REAL, intent(out):: flux_q(klon, nbsrf) ! flux de vapeur d'eau (kg / m2 / s) à la surface - REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + REAL, intent(out):: flux_u(:, :), flux_v(:, :) ! (klon, nbsrf) ! tension du vent (flux turbulent de vent) à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) @@ -126,8 +131,22 @@ real ffonte(klon, nbsrf) ! flux thermique utilise pour fondre la neige REAL, intent(inout):: run_off_lic_0(:) ! (klon) + REAL, intent(out):: albsol(:) ! (klon) + ! albedo du sol total, visible, moyen par maille + + REAL, intent(in):: sollw(:) ! (klon) + ! surface net downward longwave flux, in W m-2 + + REAL, intent(in):: solsw(:) ! (klon) + ! surface net downward shortwave flux, in W m-2 + + REAL, intent(in):: tsol(:) ! (klon) + ! Local: + REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous-surface + REAL fsolsw(klon, nbsrf) ! flux solaire absorb\'e pour chaque sous-surface + ! la nouvelle repartition des surfaces sortie de l'interface REAL, save:: pctsrf_new_oce(klon) REAL, save:: pctsrf_new_sic(klon) @@ -137,14 +156,14 @@ REAL run_off_lic(klon) ! ruissellement total REAL rugmer(klon) REAL ytsoil(klon, nsoilmx) - REAL yts(klon), ypct(klon), yz0_new(klon) + REAL yts(klon), ypctsrf(klon), yz0_new(klon) real yrugos(klon) ! longueur de rugosite (en m) REAL yalb(klon) REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 REAL yrain_fall(klon) ! liquid water mass flux (kg / m2 / s), positive down REAL ysnow_fall(klon) ! solid water mass flux (kg / m2 / s), positive down - REAL yrugm(klon), yrads(klon), yrugoro(klon) + REAL yrugm(klon), radsol(klon), yrugoro(klon) REAL yfluxlat(klon) REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) @@ -186,6 +205,17 @@ !------------------------------------------------------------ + albsol = sum(falbe * pctsrf, dim = 2) + + ! R\'epartition sous maille des flux longwave et shortwave + ! R\'epartition du longwave par sous-surface lin\'earis\'ee + + forall (nsrf = 1:nbsrf) + fsollw(:, nsrf) = sollw + 4. * RSIGMA * tsol**3 & + * (tsol - ftsol(:, nsrf)) + fsolsw(:, nsrf) = solsw * (1. - falbe(:, nsrf)) / (1. - albsol) + END forall + ytherm = 0. DO k = 1, klev ! epaisseur de couche @@ -200,7 +230,6 @@ cdragm = 0. dflux_t = 0. dflux_q = 0. - ypct = 0. yrugos = 0. ypaprs = 0. ypplay = 0. @@ -226,8 +255,8 @@ pctsrf_pot(:, is_ter) = pctsrf(:, is_ter) pctsrf_pot(:, is_lic) = pctsrf(:, is_lic) - pctsrf_pot(:, is_oce) = 1. - zmasq - pctsrf_pot(:, is_sic) = 1. - zmasq + pctsrf_pot(:, is_oce) = 1. - masque + pctsrf_pot(:, is_sic) = 1. - masque ! Tester si c'est le moment de lire le fichier: if (mod(itap - 1, lmt_pas) == 0) then @@ -238,7 +267,7 @@ loop_surface: DO nsrf = 1, nbsrf ! Define ni and knon: - + ni = 0 knon = 0 @@ -252,22 +281,19 @@ END DO if_knon: IF (knon /= 0) then - DO j = 1, knon - i = ni(j) - ypct(j) = pctsrf(i, nsrf) - yts(j) = ftsol(i, nsrf) - snow(j) = fsnow(i, nsrf) - yqsurf(j) = qsurf(i, nsrf) - yalb(j) = falbe(i, nsrf) - yrain_fall(j) = rain_fall(i) - ysnow_fall(j) = snow_fall(i) - yagesno(j) = agesno(i, nsrf) - yrugos(j) = frugs(i, nsrf) - yrugoro(j) = rugoro(i) - yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) - ypaprs(j, klev + 1) = paprs(i, klev + 1) - y_run_off_lic_0(j) = run_off_lic_0(i) - END DO + ypctsrf(:knon) = pctsrf(ni(:knon), nsrf) + yts(:knon) = ftsol(ni(:knon), nsrf) + snow(:knon) = fsnow(ni(:knon), nsrf) + yqsurf(:knon) = fqsurf(ni(:knon), nsrf) + yalb(:knon) = falbe(ni(:knon), nsrf) + yrain_fall(:knon) = rain_fall(ni(:knon)) + ysnow_fall(:knon) = snow_fall(ni(:knon)) + yagesno(:knon) = agesno(ni(:knon), nsrf) + yrugos(:knon) = frugs(ni(:knon), nsrf) + yrugoro(:knon) = rugoro(ni(:knon)) + radsol(:knon) = fsolsw(ni(:knon), nsrf) + fsollw(ni(:knon), nsrf) + ypaprs(:knon, klev + 1) = paprs(ni(:knon), klev + 1) + y_run_off_lic_0(:knon) = run_off_lic_0(ni(:knon)) ! For continent, copy soil water content IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon)) @@ -278,7 +304,7 @@ DO j = 1, knon i = ni(j) ypaprs(j, k) = paprs(i, k) - ypplay(j, k) = pplay(i, k) + ypplay(j, k) = play(i, k) ydelp(j, k) = delp(i, k) yu(j, k) = u(i, k) yv(j, k) = v(i, k) @@ -319,7 +345,7 @@ ypplay(:knon, :), yu(:knon, :), yv(:knon, :), yq(:knon, :), & yt(:knon, :), yts(:knon), ycdragm(:knon), zgeop(:knon, :), & ycoefm(:knon, :), ycoefh(:knon, :), yq2(:knon, :)) - + CALL clvent(yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & @@ -333,7 +359,7 @@ mu0(ni(:knon)), yrugos(:knon), yrugoro(:knon), yu(:knon, 1), & yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), yt(:knon, :), & yq(:knon, :), yts(:knon), ypaprs(:knon, :), ypplay(:knon, :), & - ydelp(:knon, :), yrads(:knon), yalb(:knon), snow(:knon), & + ydelp(:knon, :), radsol(:knon), yalb(:knon), snow(:knon), & yqsurf(:knon), yrain_fall(:knon), ysnow_fall(:knon), & yfluxlat(:knon), pctsrf_new_sic(ni(:knon)), yagesno(:knon), & y_d_t(:knon, :), y_d_q(:knon, :), y_d_ts(:knon), & @@ -357,10 +383,10 @@ DO k = 1, klev DO j = 1, knon i = ni(j) - y_d_t(j, k) = y_d_t(j, k) * ypct(j) - y_d_q(j, k) = y_d_q(j, k) * ypct(j) - y_d_u(j, k) = y_d_u(j, k) * ypct(j) - y_d_v(j, k) = y_d_v(j, k) * ypct(j) + y_d_t(j, k) = y_d_t(j, k) * ypctsrf(j) + y_d_q(j, k) = y_d_q(j, k) * ypctsrf(j) + y_d_u(j, k) = y_d_u(j, k) * ypctsrf(j) + y_d_v(j, k) = y_d_v(j, k) * ypctsrf(j) END DO END DO @@ -371,14 +397,14 @@ falbe(:, nsrf) = 0. fsnow(:, nsrf) = 0. - qsurf(:, nsrf) = 0. + fqsurf(:, nsrf) = 0. frugs(:, nsrf) = 0. DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) falbe(i, nsrf) = yalb(j) fsnow(i, nsrf) = snow(j) - qsurf(i, nsrf) = yqsurf(j) + fqsurf(i, nsrf) = yqsurf(j) frugs(i, nsrf) = yz0_new(j) fluxlat(i, nsrf) = yfluxlat(j) IF (nsrf == is_oce) THEN @@ -388,10 +414,10 @@ agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j) - cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j) - dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypct(j) - dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypct(j) + cdragh(i) = cdragh(i) + ycdragh(j) * ypctsrf(j) + cdragm(i) = cdragm(i) + ycdragm(j) * ypctsrf(j) + dflux_t(i) = dflux_t(i) + y_dflux_t(j) * ypctsrf(j) + dflux_q(i) = dflux_q(i) + y_dflux_q(j) * ypctsrf(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -417,7 +443,7 @@ END DO forall (k = 2:klev) coefh(ni(:knon), k) & - = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon) + = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypctsrf(:knon) ! diagnostic t, q a 2m et u, v a 10m