/[lmdze]/trunk/phylmd/Interface_surf/pbl_surface.f
ViewVC logotype

Diff of /trunk/phylmd/Interface_surf/pbl_surface.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 186 by guez, Mon Mar 21 15:36:26 2016 UTC revision 238 by guez, Thu Nov 9 14:11:39 2017 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, pctsrf, pctsrf_new, t, q, u, v, jour, rmu0, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         ts, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9         paprs, pplay, snow, qsurf, evap, falbe, fluxlat, rain_fall, snow_f, &         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10         solsw, sollw, fder, rlat, rugos, debut, agesno, rugoro, d_t, d_q, d_u, &         agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11         d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &         flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12         dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, capcl, &         u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13         oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, fqcalving, &         trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
        ffonte, run_off_lic_0)  
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
# Line 22  contains Line 21  contains
21      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! de sol.      ! de sol.
23    
     ! Pour pouvoir extraire les coefficients d'\'echanges et le vent  
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
24      use clqh_m, only: clqh      use clqh_m, only: clqh
25      use clvent_m, only: clvent      use clvent_m, only: clvent
26      use coefkz_m, only: coefkz      use coefkz_m, only: coefkz
27      use coefkzmin_m, only: coefkzmin      use coefkzmin_m, only: coefkzmin
28      USE conf_gcm_m, ONLY: prt_level      use coefkz2_m, only: coefkz2
29        USE conf_gcm_m, ONLY: lmt_pas
30      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
31      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
32      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
33      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
34      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35        USE interfoce_lim_m, ONLY: interfoce_lim
36      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
37      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rkappa
38        use time_phylmdz, only: itap
39      use ustarhb_m, only: ustarhb      use ustarhb_m, only: ustarhb
     use vdif_kcay_m, only: vdif_kcay  
40      use yamada4_m, only: yamada4      use yamada4_m, only: yamada4
41    
42      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
     INTEGER, INTENT(IN):: itap ! numero du pas de temps  
     REAL, INTENT(inout):: pctsrf(klon, nbsrf)  
43    
44      ! la nouvelle repartition des surfaces sortie de l'interface      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45      REAL, INTENT(out):: pctsrf_new(klon, nbsrf)      ! tableau des pourcentages de surface de chaque maille
46    
47      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
52      REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54      REAL, INTENT(IN):: ksta, ksta_ter      REAL, INTENT(IN):: ksta, ksta_ter
55      LOGICAL, INTENT(IN):: ok_kzmin      LOGICAL, INTENT(IN):: ok_kzmin
# Line 63  contains Line 57  contains
57      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58      ! soil temperature of surface fraction      ! soil temperature of surface fraction
59    
60      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
61      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
62    
63      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65      REAL snow(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
67      REAL evap(klon, nbsrf)      REAL evap(klon, nbsrf)
68      REAL, intent(inout):: falbe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
69        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
     REAL fluxlat(klon, nbsrf)  
70    
71      REAL, intent(in):: rain_fall(klon)      REAL, intent(in):: rain_fall(klon)
72      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
73    
74      REAL, intent(in):: snow_f(klon)      REAL, intent(in):: snow_f(klon)
75      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
76    
77      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78      REAL, intent(in):: fder(klon)      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
     REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es  
   
     REAL rugos(klon, nbsrf)  
     ! rugos----input-R- longeur de rugosite (en m)  
   
     LOGICAL, INTENT(IN):: debut  
79      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
80      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
81    
# Line 99  contains Line 86  contains
86      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87      ! changement pour "u" et "v"      ! changement pour "u" et "v"
88    
89      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts"      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90    
91        REAL, intent(out):: flux_t(klon, nbsrf)
92        ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93        ! le bas) à la surface
94    
95        REAL, intent(out):: flux_q(klon, nbsrf)
96        ! flux de vapeur d'eau (kg / m2 / s) à la surface
97    
98      REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)      ! tension du vent (flux turbulent de vent) à la surface, en Pa
     !                    (orientation positive vers le bas)  
     ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   
     REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
     ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
     ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
100    
101      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
103    
104      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
106      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
107      !IM "slab" ocean      ! IM "slab" ocean
108    
109      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: ycoefh(:, :) ! (klon, klev)
110      REAL, intent(out):: zu1(klon)      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111      REAL zv1(klon)      ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)      ! ce champ sur les quatre sous-surfaces du mod\`ele.
113      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
114        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115      ! Ionela Musat cf. Anne Mathieu : pbl, hbtm (Comme les autres  
116      ! diagnostics on cumule dans physiq ce qui permet de sortir les      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117      ! grandeurs par sous-surface)      ! composantes du vent \`a 10m sans spirale d'Ekman
118      REAL pblh(klon, nbsrf)  
119      ! pblh------- HCL      ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121        ! de sortir les grandeurs par sous-surface.
122        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
124      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
125      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
126      REAL pblt(klon, nbsrf)      REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
     ! pblT------- T au nveau HCL  
127      REAL therm(klon, nbsrf)      REAL therm(klon, nbsrf)
128      REAL trmb1(klon, nbsrf)      REAL trmb1(klon, nbsrf)
129      ! trmb1-------deep_cape      ! trmb1-------deep_cape
# Line 145  contains Line 135  contains
135      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136      ! ffonte----Flux thermique utilise pour fondre la neige      ! ffonte----Flux thermique utilise pour fondre la neige
137      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138      !           hauteur de neige, en kg/m2/s      !           hauteur de neige, en kg / m2 / s
139      REAL run_off_lic_0(klon)      REAL run_off_lic_0(klon)
140    
141      ! Local:      ! Local:
142    
143        LOGICAL:: firstcal = .true.
144    
145        ! la nouvelle repartition des surfaces sortie de l'interface
146        REAL, save:: pctsrf_new_oce(klon)
147        REAL, save:: pctsrf_new_sic(klon)
148    
149      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
150      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon)
   
151      REAL rugmer(klon)      REAL rugmer(klon)
   
152      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
   
153      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154      REAL yalb(klon)      REAL yalb(klon)
155      REAL yu1(klon), yv1(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
156      ! on rajoute en output yu1 et yv1 qui sont les vents dans      real yqsol(klon) ! column-density of water in soil, in kg m-2
157      ! la premiere couche      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158      REAL ysnow(klon), yqsurf(klon), yagesno(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
   
     real yqsol(klon)  
     ! column-density of water in soil, in kg m-2  
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
159      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
160      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
161      REAL y_d_ts(klon)      REAL y_d_ts(klon)
162      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
163      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
164      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
165      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
166      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
167      REAL coefh(klon, klev), coefm(klon, klev)      REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168        real ycdragh(klon), ycdragm(klon)
169      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
170      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
171      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
   
172      REAL ycoefm0(klon, klev), ycoefh0(klon, klev)      REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
173        REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174      REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)      REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175      REAL ykmm(klon, klev+1), ykmn(klon, klev+1)      REAL yq2(klon, klev + 1)
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
176      REAL delp(klon, klev)      REAL delp(klon, klev)
177      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
178      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
179    
180      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
181      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
183    
184      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL yt2m(klon), yq2m(klon), wind10m(klon)
185        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
186    
187      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
188      REAL ypblh(klon)      REAL ypblh(klon)
# Line 223  contains Line 195  contains
195      REAL ytrmb1(klon)      REAL ytrmb1(klon)
196      REAL ytrmb2(klon)      REAL ytrmb2(klon)
197      REAL ytrmb3(klon)      REAL ytrmb3(klon)
198      REAL uzon(klon), vmer(klon)      REAL u1(klon), v1(klon)
199      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
200      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
201    
202      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
203      REAL rugo1(klon)      REAL rugo1(klon)
204    
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
205      !------------------------------------------------------------      !------------------------------------------------------------
206    
207      ytherm = 0.      ytherm = 0.
208    
209      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
210         DO i = 1, klon         DO i = 1, klon
211            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212         END DO         END DO
213      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
214    
215      ! Initialization:      ! Initialization:
216      rugmer = 0.      rugmer = 0.
# Line 256  contains Line 218  contains
218      cdragm = 0.      cdragm = 0.
219      dflux_t = 0.      dflux_t = 0.
220      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
221      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
222      yqsurf = 0.      yqsurf = 0.
223      yrain_f = 0.      yrain_f = 0.
224      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
225      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
226      ypaprs = 0.      ypaprs = 0.
227      ypplay = 0.      ypplay = 0.
228      ydelp = 0.      ydelp = 0.
# Line 276  contains Line 230  contains
230      yv = 0.      yv = 0.
231      yt = 0.      yt = 0.
232      yq = 0.      yq = 0.
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
233      y_dflux_t = 0.      y_dflux_t = 0.
234      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
235      yrugoro = 0.      yrugoro = 0.
236      d_ts = 0.      d_ts = 0.
     yfluxlat = 0.  
237      flux_t = 0.      flux_t = 0.
238      flux_q = 0.      flux_q = 0.
239      flux_u = 0.      flux_u = 0.
240      flux_v = 0.      flux_v = 0.
241        fluxlat = 0.
242      d_t = 0.      d_t = 0.
243      d_q = 0.      d_q = 0.
244      d_u = 0.      d_u = 0.
# Line 299  contains Line 249  contains
249      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250      ! (\`a affiner)      ! (\`a affiner)
251    
252      pctsrf_pot = pctsrf      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
255      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
256    
257        ! Tester si c'est le moment de lire le fichier:
258        if (mod(itap - 1, lmt_pas) == 0) then
259           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260        endif
261    
262      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
263    
264      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
# Line 322  contains Line 278  contains
278            DO j = 1, knon            DO j = 1, knon
279               i = ni(j)               i = ni(j)
280               ypct(j) = pctsrf(i, nsrf)               ypct(j) = pctsrf(i, nsrf)
281               yts(j) = ts(i, nsrf)               yts(j) = ftsol(i, nsrf)
282               ysnow(j) = snow(i, nsrf)               snow(j) = fsnow(i, nsrf)
283               yqsurf(j) = qsurf(i, nsrf)               yqsurf(j) = qsurf(i, nsrf)
284               yalb(j) = falbe(i, nsrf)               yalb(j) = falbe(i, nsrf)
285               yrain_f(j) = rain_fall(i)               yrain_f(j) = rain_fall(i)
286               ysnow_f(j) = snow_f(i)               ysnow_f(j) = snow_f(i)
287               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
288               yfder(j) = fder(i)               yrugos(j) = frugs(i, nsrf)
              yrugos(j) = rugos(i, nsrf)  
289               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
290               yu1(j) = u1lay(i)               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291               yv1(j) = v1lay(i)               ypaprs(j, klev + 1) = paprs(i, klev + 1)
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
292               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
293            END DO            END DO
294    
295            ! For continent, copy soil water content            ! For continent, copy soil water content
296            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
297    
298            DO k = 1, nsoilmx            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
              DO j = 1, knon  
                 i = ni(j)  
                 ytsoil(j, k) = ftsoil(i, k, nsrf)  
              END DO  
           END DO  
299    
300            DO k = 1, klev            DO k = 1, klev
301               DO j = 1, knon               DO j = 1, knon
# Line 367  contains Line 311  contains
311            END DO            END DO
312    
313            ! calculer Cdrag et les coefficients d'echange            ! calculer Cdrag et les coefficients d'echange
314            CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315                 yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))                 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
316                   coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
317    
318            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
319               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, 2:), &
320               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))                    ycoefh0(:knon, 2:))
321               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               ycoefm0(:knon, 1) = 0.
322                 ycoefh0(:knon, 1) = 0.
323                 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, 2:))
324                 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, 2:))
325                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
326                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
327            END IF            END IF
328    
329            ! on met un seuil pour coefm et coefh            ! on met un seuil pour ycdragm et ycdragh
330            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
331               coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)               ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
332               coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
333            END IF            END IF
334    
335            IF (ok_kzmin) THEN            IF (ok_kzmin) THEN
336               ! Calcul d'une diffusion minimale pour les conditions tres stables               ! Calcul d'une diffusion minimale pour les conditions tres stables
337               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
338                    coefm(:knon, 1), ycoefm0, ycoefh0)                    ycdragm(:knon), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:))
339               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, 2:))
340               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, 2:))
341                 ycdragm(:knon) = max(ycdragm(:knon), ycoefm0(:knon, 1))
342                 ycdragh(:knon) = max(ycdragh(:knon), ycoefh0(:knon, 1))
343            END IF            END IF
344    
345            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl >= 6) THEN
346               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
347               ! Fr\'ed\'eric Hourdin               ! Fr\'ed\'eric Hourdin
348               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
349                    + ypplay(:knon, 1))) &                    + ypplay(:knon, 1))) &
350                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
351    
352               DO k = 2, klev               DO k = 2, klev
353                  yzlay(1:knon, k) = yzlay(1:knon, k-1) &                  yzlay(:knon, k) = yzlay(:knon, k-1) &
354                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
355                       / ypaprs(1:knon, k) &                       / ypaprs(1:knon, k) &
356                       * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg                       * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
357               END DO               END DO
358    
359               DO k = 1, klev               DO k = 1, klev
360                  yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &                  yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
361                       / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))                       / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
362               END DO               END DO
363               yzlev(1:knon, 1) = 0.  
364               yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &               zlev(:knon, 1) = 0.
365                 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
366                    - yzlay(:knon, klev - 1)                    - yzlay(:knon, klev - 1)
367    
368               DO k = 2, klev               DO k = 2, klev
369                  yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))                  zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
370               END DO               END DO
371    
372               DO k = 1, klev + 1               DO k = 1, klev + 1
373                  DO j = 1, knon                  DO j = 1, knon
374                     i = ni(j)                     i = ni(j)
# Line 418  contains Line 376  contains
376                  END DO                  END DO
377               END DO               END DO
378    
379               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)               ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
380               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar               CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
381                      yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
382               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange                    ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
383                 coefm(:knon, :) = ykmm(:knon, 2:klev)
384               IF (iflag_pbl >= 11) THEN               coefh(:knon, :) = ykmn(:knon, 2:klev)
                 CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &  
                      yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &  
                      iflag_pbl)  
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
   
              coefm(:knon, 2:) = ykmm(:knon, 2:klev)  
              coefh(:knon, 2:) = ykmn(:knon, 2:klev)  
385            END IF            END IF
386    
387            ! calculer la diffusion des vitesses "u" et "v"            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
388            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
389                 ypplay, ydelp, y_d_u, y_flux_u)                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
390            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &                 y_flux_u(:knon))
391                 ypplay, ydelp, y_d_v, y_flux_v)            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
392                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
393                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
394                   y_flux_v(:knon))
395    
396            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
397            CALL clqh(dtime, itap, jour, debut, rlat, knon, nsrf, ni(:knon), &            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
398                 pctsrf, ytsoil, yqsol, rmu0, yrugos, yrugoro, yu1, &                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
399                 yv1, coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, &                 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
400                 yrads, yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, &                 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
401                 yfluxlat, pctsrf_new, yagesno(:knon), y_d_t, y_d_q, &                 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
402                 y_d_ts(:knon), yz0_new, y_flux_t, y_flux_q, y_dflux_t, &                 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
403                 y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
404                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
405                   y_run_off_lic_0)
406    
407            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
408            yrugm = 0.            yrugm = 0.
409            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
410               DO j = 1, knon               DO j = 1, knon
411                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
412                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
413                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
414                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
415               END DO               END DO
416            END IF            END IF
417            DO j = 1, knon            DO j = 1, knon
418               y_dflux_t(j) = y_dflux_t(j)*ypct(j)               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
419               y_dflux_q(j) = y_dflux_q(j)*ypct(j)               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
420            END DO            END DO
421    
422              DO k = 2, klev
423                 DO j = 1, knon
424                    i = ni(j)
425                    coefh(j, k) = coefh(j, k) * ypct(j)
426                    coefm(j, k) = coefm(j, k) * ypct(j)
427                 END DO
428              END DO
429              DO j = 1, knon
430                 i = ni(j)
431                 ycdragh(j) = ycdragh(j) * ypct(j)
432                 ycdragm(j) = ycdragm(j) * ypct(j)
433              END DO
434            DO k = 1, klev            DO k = 1, klev
435               DO j = 1, knon               DO j = 1, knon
436                  i = ni(j)                  i = ni(j)
437                  coefh(j, k) = coefh(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
438                  coefm(j, k) = coefm(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
439                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
440                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
                 flux_t(i, k, nsrf) = y_flux_t(j, k)  
                 flux_q(i, k, nsrf) = y_flux_q(j, k)  
                 flux_u(i, k, nsrf) = y_flux_u(j, k)  
                 flux_v(i, k, nsrf) = y_flux_v(j, k)  
                 y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
                 y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
441               END DO               END DO
442            END DO            END DO
443    
444            evap(:, nsrf) = -flux_q(:, 1, nsrf)            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
445              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
446              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
447              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
448    
449              evap(:, nsrf) = -flux_q(:, nsrf)
450    
451            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
452            snow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
453            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
454            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
           fluxlat(:, nsrf) = 0.  
455            DO j = 1, knon            DO j = 1, knon
456               i = ni(j)               i = ni(j)
457               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
458               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
459               snow(i, nsrf) = ysnow(j)               fsnow(i, nsrf) = snow(j)
460               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
461               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
462               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
463               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
464                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
465                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
466               END IF               END IF
467               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
468               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
469               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
470               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j)
471               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j)
472               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j)
473               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
474            END DO            END DO
475            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
476               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 522  contains Line 482  contains
482            END IF            END IF
483    
484            ftsoil(:, :, nsrf) = 0.            ftsoil(:, :, nsrf) = 0.
485            DO k = 1, nsoilmx            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
              DO j = 1, knon  
                 i = ni(j)  
                 ftsoil(i, k, nsrf) = ytsoil(j, k)  
              END DO  
           END DO  
486    
487            DO j = 1, knon            DO j = 1, knon
488               i = ni(j)               i = ni(j)
# Line 536  contains Line 491  contains
491                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
492                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
493                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
494                 END DO
495              END DO
496              
497              DO j = 1, knon
498                 i = ni(j)
499                 DO k = 2, klev
500                  ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)                  ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
501               END DO               END DO
502            END DO            END DO
503    
504              DO j = 1, knon
505                 i = ni(j)
506                 ycoefh(i, 1) = ycoefh(i, 1) + ycdragh(j)
507              END DO
508    
509            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
510    
511            DO j = 1, knon            DO j = 1, knon
512               i = ni(j)               i = ni(j)
513               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
514               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
515               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
516               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
517               zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
518                    1)))*(ypaprs(j, 1)-ypplay(j, 1))                    1))) * (ypaprs(j, 1)-ypplay(j, 1))
519               tairsol(j) = yts(j) + y_d_ts(j)               tairsol(j) = yts(j) + y_d_ts(j)
520               rugo1(j) = yrugos(j)               rugo1(j) = yrugos(j)
521               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
522                  rugo1(j) = rugos(i, nsrf)                  rugo1(j) = frugs(i, nsrf)
523               END IF               END IF
524               psfce(j) = ypaprs(j, 1)               psfce(j) = ypaprs(j, 1)
525               patm(j) = ypplay(j, 1)               patm(j) = ypplay(j, 1)
# Line 561  contains Line 527  contains
527               qairsol(j) = yqsurf(j)               qairsol(j) = yqsurf(j)
528            END DO            END DO
529    
530            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
531                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
532                 yt10m, yq10m, yu10m, yustar)                 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
533    
534            DO j = 1, knon            DO j = 1, knon
535               i = ni(j)               i = ni(j)
536               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
537               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
538    
539               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
540               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
541               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
542                      / sqrt(u1(j)**2 + v1(j)**2)
543            END DO            END DO
544    
545            CALL hbtm(knon, ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t, &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
546                 y_flux_q, yu, yv, yt, yq, ypblh(:knon), ycapcl, yoliqcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
547                 ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
548    
549            DO j = 1, knon            DO j = 1, knon
550               i = ni(j)               i = ni(j)
# Line 600  contains Line 566  contains
566                  q2(i, k, nsrf) = yq2(j, k)                  q2(i, k, nsrf) = yq2(j, k)
567               END DO               END DO
568            END DO            END DO
569           else
570              fsnow(:, nsrf) = 0.
571         end IF if_knon         end IF if_knon
572      END DO loop_surface      END DO loop_surface
573    
574      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
575        frugs(:, is_oce) = rugmer
576        pctsrf(:, is_oce) = pctsrf_new_oce
577        pctsrf(:, is_sic) = pctsrf_new_sic
578    
579      rugos(:, is_oce) = rugmer      firstcal = .false.
     pctsrf = pctsrf_new  
580    
581    END SUBROUTINE clmain    END SUBROUTINE clmain
582    

Legend:
Removed from v.186  
changed lines
  Added in v.238

  ViewVC Help
Powered by ViewVC 1.1.21