--- trunk/phylmd/soil.f 2014/03/05 14:57:53 82 +++ trunk/Sources/phylmd/Interface_surf/soil.f 2016/09/01 10:30:53 207 @@ -1,248 +1,217 @@ +module soil_m -! $Header: /home/cvsroot/LMDZ4/libf/phylmd/soil.F,v 1.1.1.1 2004/05/19 -! 12:53:09 lmdzadmin Exp $ - -SUBROUTINE soil(ptimestep, indice, knon, snow, ptsrf, ptsoil, pcapcal, & - pfluxgrd) - USE dimens_m - USE indicesol - USE dimphy - USE dimsoil - USE suphec_m IMPLICIT NONE - ! ======================================================================= +contains - ! Auteur: Frederic Hourdin 30/01/92 - ! ------- + SUBROUTINE soil(dtime, nisurf, snow, tsurf, tsoil, soilcap, soilflux) - ! objet: computation of : the soil temperature evolution - ! ------ the surfacic heat capacity "Capcal" - ! the surface conduction flux pcapcal - - - ! Method: implicit time integration - ! ------- - ! Consecutive ground temperatures are related by: - ! T(k+1) = C(k) + D(k)*T(k) (1) - ! the coefficients C and D are computed at the t-dt time-step. - ! Routine structure: - ! 1)new temperatures are computed using (1) - ! 2)C and D coefficients are computed from the new temperature - ! profile for the t+dt time-step - ! 3)the coefficients A and B are computed where the diffusive - ! fluxes at the t+dt time-step is given by - ! Fdiff = A + B Ts(t+dt) - ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt - ! with F0 = A + B (Ts(t)) - ! Capcal = B*dt - - ! Interface: - ! ---------- - - ! Arguments: - ! ---------- - ! ptimestep physical timestep (s) - ! indice sub-surface index - ! snow(klon,nbsrf) snow - ! ptsrf(klon) surface temperature at time-step t (K) - ! ptsoil(klon,nsoilmx) temperature inside the ground (K) - ! pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) - ! pfluxgrd(klon) surface diffusive flux from ground (Wm-2) - - ! ======================================================================= - ! declarations: - ! ------------- - - - ! ----------------------------------------------------------------------- - ! arguments - ! --------- - - REAL ptimestep - INTEGER indice, knon - REAL ptsrf(klon), ptsoil(klon, nsoilmx), snow(klon) - REAL pcapcal(klon), pfluxgrd(klon) - - ! ----------------------------------------------------------------------- - ! local arrays - ! ------------ - - INTEGER ig, jk - ! $$$ REAL zdz2(nsoilmx),z1(klon) - REAL zdz2(nsoilmx), z1(klon, nbsrf) - REAL min_period, dalph_soil - REAL ztherm_i(klon) - - ! local saved variables: - ! ---------------------- - REAL dz1(nsoilmx), dz2(nsoilmx) - ! $$$ REAL zc(klon,nsoilmx),zd(klon,nsoilmx) - REAL zc(klon, nsoilmx, nbsrf), zd(klon, nsoilmx, nbsrf) - REAL lambda - SAVE dz1, dz2, zc, zd, lambda - LOGICAL firstcall, firstsurf(nbsrf) - SAVE firstcall, firstsurf - REAL isol, isno, iice - SAVE isol, isno, iice - - DATA firstcall/.TRUE./ - DATA firstsurf/.TRUE., .TRUE., .TRUE., .TRUE./ - - DATA isol, isno, iice/2000., 2000., 2000./ - - ! ----------------------------------------------------------------------- - ! Depthts: - ! -------- - - REAL fz, rk, fz1, rk1, rk2 - - fz(rk) = fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) - pfluxgrd(:) = 0. - ! calcul de l'inertie thermique a partir de la variable rnat. - ! on initialise a iice meme au-dessus d'un point de mer au cas - ! ou le point de mer devienne point de glace au pas suivant - ! on corrige si on a un point de terre avec ou sans glace + ! From LMDZ4/libf/phylmd/soil.F, version 1.1.1.1, 2004/05/19 - IF (indice==is_sic) THEN - DO ig = 1, knon - ztherm_i(ig) = iice - IF (snow(ig)>0.0) ztherm_i(ig) = isno - END DO - ELSE IF (indice==is_lic) THEN - DO ig = 1, knon - ztherm_i(ig) = iice - IF (snow(ig)>0.0) ztherm_i(ig) = isno - END DO - ELSE IF (indice==is_ter) THEN - DO ig = 1, knon - ztherm_i(ig) = isol - IF (snow(ig)>0.0) ztherm_i(ig) = isno - END DO - ELSE IF (indice==is_oce) THEN - DO ig = 1, knon - ztherm_i(ig) = iice - END DO - ELSE - PRINT *, 'valeur d indice non prevue', indice - STOP 1 - END IF - - - ! $$$ IF (firstcall) THEN - IF (firstsurf(indice)) THEN - - ! ----------------------------------------------------------------------- - ! ground levels - ! grnd=z/l where l is the skin depth of the diurnal cycle: - ! -------------------------------------------------------- - - min_period = 1800. ! en secondes - dalph_soil = 2. ! rapport entre les epaisseurs de 2 couches succ. - - OPEN (99, FILE='soil.def', STATUS='old', FORM='formatted', ERR=9999) - READ (99, *) min_period - READ (99, *) dalph_soil - PRINT *, 'Discretization for the soil model' - PRINT *, 'First level e-folding depth', min_period, ' dalph', & - dalph_soil - CLOSE (99) -9999 CONTINUE + ! Author: Frederic Hourdin, January 30th, 1992 - ! la premiere couche represente un dixieme de cycle diurne - fz1 = sqrt(min_period/3.14) + ! Object: computation of the soil temperature evolution, the heat + ! capacity per unit surface and the surface conduction flux + + ! Method: implicit time integration + + ! Consecutive ground temperatures are related by: + ! T(k + 1) = C(k) + D(k) * T(k) (1) + ! The coefficients C and D are computed at the t - dt time-step. + ! Structure of the procedure: + ! 1) new temperatures are computed using (1) + ! 2) C and D coefficients are computed from the new temperature + ! profile for the t + dt time-step + ! 3) the coefficients A and B are computed where the diffusive + ! fluxes at the t + dt time-step is given by + ! Fdiff = A + B Ts(t + dt) + ! or + ! Fdiff = F0 + Soilcap (Ts(t + dt) - Ts(t)) / dt + ! with + ! F0 = A + B (Ts(t)) + ! Soilcap = B * dt + + USE indicesol, only: nbsrf, is_lic, is_oce, is_sic, is_ter + USE dimphy, only: klon + USE dimsoil, only: nsoilmx + USE suphec_m, only: rtt + + REAL, intent(in):: dtime ! physical timestep (s) + INTEGER, intent(in):: nisurf ! sub-surface index + REAL, intent(in):: snow(:) ! (knon) + REAL, intent(in):: tsurf(:) ! (knon) surface temperature at time-step t (K) + + real, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) + ! temperature inside the ground (K) + + REAL, intent(out):: soilcap(:) ! (knon) + ! specific heat per unit surface (W m-2 s K-1) + + REAL, intent(out):: soilflux(:) ! (knon) + ! surface diffusive flux from ground (W m-2) + + ! Local: + + INTEGER knon, ig, jk + REAL zdz2(nsoilmx) + real z1(size(tsurf), nbsrf) ! (knon, nbsrf) + REAL min_period, dalph_soil + REAL ztherm_i(size(tsurf)) ! (knon) + REAL, save:: dz1(nsoilmx), dz2(nsoilmx) + REAL, save:: zc(klon, nsoilmx, nbsrf), zd(klon, nsoilmx, nbsrf) + REAL, save:: lambda + LOGICAL:: firstsurf(nbsrf) = .TRUE. + REAL:: isol = 2000., isno = 2000., iice = 2000. + + ! Depths: + REAL rk, fz1, rk1, rk2 + + !----------------------------------------------------------------------- + + knon = size(tsurf) + + ! Calcul de l'inertie thermique. On initialise \`a iice m\^eme + ! au-dessus d'un point de mer au cas o\`u le point de mer devienne + ! point de glace au pas suivant. On corrige si on a un point de + ! terre avec ou sans glace. + + IF (nisurf==is_sic) THEN + DO ig = 1, knon + ztherm_i(ig) = iice + IF (snow(ig) > 0.0) ztherm_i(ig) = isno + END DO + ELSE IF (nisurf==is_lic) THEN + DO ig = 1, knon + ztherm_i(ig) = iice + IF (snow(ig) > 0.0) ztherm_i(ig) = isno + END DO + ELSE IF (nisurf==is_ter) THEN + DO ig = 1, knon + ztherm_i(ig) = isol + IF (snow(ig) > 0.0) ztherm_i(ig) = isno + END DO + ELSE IF (nisurf==is_oce) THEN + DO ig = 1, knon + ztherm_i(ig) = iice + END DO + ELSE + PRINT *, 'valeur d indice non prevue', nisurf + STOP 1 + END IF + + IF (firstsurf(nisurf)) THEN + ! ground levels + ! grnd=z / l where l is the skin depth of the diurnal cycle: + + min_period = 1800. ! en secondes + dalph_soil = 2. ! rapport entre les epaisseurs de 2 couches succ. + + OPEN(99, FILE='soil.def', STATUS='old', FORM='formatted', ERR=9999) + READ(99, *) min_period + READ(99, *) dalph_soil + PRINT *, 'Discretization for the soil model' + PRINT *, 'First level e-folding depth', min_period, ' dalph', & + dalph_soil + CLOSE(99) +9999 CONTINUE + + ! la premiere couche represente un dixieme de cycle diurne + fz1 = sqrt(min_period / 3.14) + + DO jk = 1, nsoilmx + rk1 = jk + rk2 = jk - 1 + dz2(jk) = fz(rk1) - fz(rk2) + END DO + DO jk = 1, nsoilmx - 1 + rk1 = jk + .5 + rk2 = jk - .5 + dz1(jk) = 1. / (fz(rk1) - fz(rk2)) + END DO + lambda = fz(.5) * dz1(1) + PRINT *, 'full layers, intermediate layers (seconds)' + DO jk = 1, nsoilmx + rk = jk + rk1 = jk + .5 + rk2 = jk - .5 + PRINT *, 'fz=', fz(rk1) * fz(rk2) * 3.14, fz(rk) * fz(rk) * 3.14 + END DO + ! PB + firstsurf(nisurf) = .FALSE. + ELSE + ! Computation of the soil temperatures using the Cgrd and Dgrd + ! coefficient computed at the previous time-step: + + ! surface temperature + DO ig = 1, knon + tsoil(ig, 1) = (lambda * zc(ig, 1, nisurf) + tsurf(ig)) & + / (lambda * (1. - zd(ig, 1, nisurf)) + 1.) + END DO + + ! other temperatures + DO jk = 1, nsoilmx - 1 + DO ig = 1, knon + tsoil(ig, jk + 1) = zc(ig, jk, nisurf) & + + zd(ig, jk, nisurf) * tsoil(ig, jk) + END DO + END DO + END IF + + ! Computation of the Cgrd and Dgrd coefficient for the next step: + + IF (nisurf==is_sic) THEN + DO ig = 1, knon + tsoil(ig, nsoilmx) = rtt - 1.8 + END DO + END IF DO jk = 1, nsoilmx - rk1 = jk - rk2 = jk - 1 - dz2(jk) = fz(rk1) - fz(rk2) + zdz2(jk) = dz2(jk) / dtime END DO - DO jk = 1, nsoilmx - 1 - rk1 = jk + .5 - rk2 = jk - .5 - dz1(jk) = 1./(fz(rk1)-fz(rk2)) - END DO - lambda = fz(.5)*dz1(1) - PRINT *, 'full layers, intermediate layers (seconds)' - DO jk = 1, nsoilmx - rk = jk - rk1 = jk + .5 - rk2 = jk - .5 - PRINT *, 'fz=', fz(rk1)*fz(rk2)*3.14, fz(rk)*fz(rk)*3.14 - END DO - ! PB - firstsurf(indice) = .FALSE. - ! $$$ firstcall =.false. - - ! Initialisations: - ! ---------------- - - ELSE !--not firstcall - ! ----------------------------------------------------------------------- - ! Computation of the soil temperatures using the Cgrd and Dgrd - ! coefficient computed at the previous time-step: - ! ----------------------------------------------- - ! surface temperature DO ig = 1, knon - ptsoil(ig, 1) = (lambda*zc(ig,1,indice)+ptsrf(ig))/(lambda*(1.-zd(ig,1, & - indice))+1.) + z1(ig, nisurf) = zdz2(nsoilmx) + dz1(nsoilmx - 1) + zc(ig, nsoilmx - 1, nisurf) = zdz2(nsoilmx) * tsoil(ig, nsoilmx) / & + z1(ig, nisurf) + zd(ig, nsoilmx - 1, nisurf) = dz1(nsoilmx - 1) / z1(ig, nisurf) END DO - ! other temperatures - DO jk = 1, nsoilmx - 1 - DO ig = 1, knon - ptsoil(ig, jk+1) = zc(ig, jk, indice) + zd(ig, jk, indice)*ptsoil(ig, & - jk) - END DO + DO jk = nsoilmx - 1, 2, - 1 + DO ig = 1, knon + z1(ig, nisurf) = 1. / (zdz2(jk) + dz1(jk - 1) & + + dz1(jk) * (1. - zd(ig, jk, nisurf))) + zc(ig, jk - 1, nisurf) = (tsoil(ig, jk) * zdz2(jk) & + + dz1(jk) * zc(ig, jk, nisurf)) * z1(ig, nisurf) + zd(ig, jk - 1, nisurf) = dz1(jk - 1) * z1(ig, nisurf) + END DO END DO - END IF !--not firstcall - ! ----------------------------------------------------------------------- - ! Computation of the Cgrd and Dgrd coefficient for the next step: - ! --------------------------------------------------------------- + ! computation of the surface diffusive flux from ground and + ! calorific capacity of the ground: - ! $$$ PB ajout pour cas glace de mer - IF (indice==is_sic) THEN DO ig = 1, knon - ptsoil(ig, nsoilmx) = rtt - 1.8 + soilflux(ig) = ztherm_i(ig) * dz1(1) * (zc(ig, 1, nisurf) + (zd(ig, 1, & + nisurf) - 1.) * tsoil(ig, 1)) + soilcap(ig) = ztherm_i(ig) * (dz2(1) & + + dtime * (1. - zd(ig, 1, nisurf)) * dz1(1)) + z1(ig, nisurf) = lambda * (1. - zd(ig, 1, nisurf)) + 1. + soilcap(ig) = soilcap(ig) / z1(ig, nisurf) + soilflux(ig) = soilflux(ig) + soilcap(ig) * (tsoil(ig, 1) & + * z1(ig, nisurf) - lambda * zc(ig, 1, nisurf) - tsurf(ig)) / dtime END DO - END IF - DO jk = 1, nsoilmx - zdz2(jk) = dz2(jk)/ptimestep - END DO - - DO ig = 1, knon - z1(ig, indice) = zdz2(nsoilmx) + dz1(nsoilmx-1) - zc(ig, nsoilmx-1, indice) = zdz2(nsoilmx)*ptsoil(ig, nsoilmx)/ & - z1(ig, indice) - zd(ig, nsoilmx-1, indice) = dz1(nsoilmx-1)/z1(ig, indice) - END DO + contains - DO jk = nsoilmx - 1, 2, -1 - DO ig = 1, knon - z1(ig, indice) = 1./(zdz2(jk)+dz1(jk-1)+dz1(jk)*(1.-zd(ig,jk,indice))) - zc(ig, jk-1, indice) = (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*zc(ig,jk,indice) & - )*z1(ig, indice) - zd(ig, jk-1, indice) = dz1(jk-1)*z1(ig, indice) - END DO - END DO + pure real function fz(rk) + + real, intent(in):: rk + + !----------------------------------------- + + fz = fz1 * (dalph_soil**rk - 1.) / (dalph_soil - 1.) + + end function fz - ! ----------------------------------------------------------------------- - ! computation of the surface diffusive flux from ground and - ! calorific capacity of the ground: - ! --------------------------------- - - DO ig = 1, knon - pfluxgrd(ig) = ztherm_i(ig)*dz1(1)*(zc(ig,1,indice)+(zd(ig,1, & - indice)-1.)*ptsoil(ig,1)) - pcapcal(ig) = ztherm_i(ig)*(dz2(1)+ptimestep*(1.-zd(ig,1,indice))*dz1(1)) - z1(ig, indice) = lambda*(1.-zd(ig,1,indice)) + 1. - pcapcal(ig) = pcapcal(ig)/z1(ig, indice) - pfluxgrd(ig) = pfluxgrd(ig) + pcapcal(ig)*(ptsoil(ig,1)*z1(ig,indice)- & - lambda*zc(ig,1,indice)-ptsrf(ig))/ptimestep - END DO + END SUBROUTINE soil - RETURN -END SUBROUTINE soil +end module soil_m