--- trunk/libf/phylmd/soil.f 2011/01/06 17:52:19 38 +++ trunk/phylmd/Interface_surf/soil.f 2018/08/02 14:27:11 299 @@ -1,253 +1,217 @@ -! -! $Header: /home/cvsroot/LMDZ4/libf/phylmd/soil.F,v 1.1.1.1 2004/05/19 12:53:09 lmdzadmin Exp $ -! - SUBROUTINE soil(ptimestep, indice, knon, snow, ptsrf, ptsoil, - s pcapcal, pfluxgrd) - use dimens_m - use indicesol - use dimphy - use dimsoil - use SUPHEC_M - IMPLICIT NONE - -c======================================================================= -c -c Auteur: Frederic Hourdin 30/01/92 -c ------- -c -c objet: computation of : the soil temperature evolution -c ------ the surfacic heat capacity "Capcal" -c the surface conduction flux pcapcal -c -c -c Method: implicit time integration -c ------- -c Consecutive ground temperatures are related by: -c T(k+1) = C(k) + D(k)*T(k) (1) -c the coefficients C and D are computed at the t-dt time-step. -c Routine structure: -c 1)new temperatures are computed using (1) -c 2)C and D coefficients are computed from the new temperature -c profile for the t+dt time-step -c 3)the coefficients A and B are computed where the diffusive -c fluxes at the t+dt time-step is given by -c Fdiff = A + B Ts(t+dt) -c or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt -c with F0 = A + B (Ts(t)) -c Capcal = B*dt -c -c Interface: -c ---------- -c -c Arguments: -c ---------- -c ptimestep physical timestep (s) -c indice sub-surface index -c snow(klon,nbsrf) snow -c ptsrf(klon) surface temperature at time-step t (K) -c ptsoil(klon,nsoilmx) temperature inside the ground (K) -c pcapcal(klon) surfacic specific heat (W*m-2*s*K-1) -c pfluxgrd(klon) surface diffusive flux from ground (Wm-2) -c -c======================================================================= -c declarations: -c ------------- - - -c----------------------------------------------------------------------- -c arguments -c --------- - - REAL ptimestep - INTEGER indice, knon - REAL ptsrf(klon),ptsoil(klon,nsoilmx),snow(klon) - REAL pcapcal(klon),pfluxgrd(klon) - -c----------------------------------------------------------------------- -c local arrays -c ------------ - - INTEGER ig,jk -c$$$ REAL zdz2(nsoilmx),z1(klon) - REAL zdz2(nsoilmx),z1(klon,nbsrf) - REAL min_period,dalph_soil - REAL ztherm_i(klon) - -c local saved variables: -c ---------------------- - REAL dz1(nsoilmx),dz2(nsoilmx) -c$$$ REAL zc(klon,nsoilmx),zd(klon,nsoilmx) - REAL zc(klon,nsoilmx,nbsrf),zd(klon,nsoilmx,nbsrf) - REAL lambda - SAVE dz1,dz2,zc,zd,lambda - LOGICAL firstcall, firstsurf(nbsrf) - SAVE firstcall, firstsurf - REAL isol,isno,iice - SAVE isol,isno,iice - - DATA firstcall/.true./ - DATA firstsurf/.TRUE.,.TRUE.,.TRUE.,.TRUE./ - - DATA isol,isno,iice/2000.,2000.,2000./ - -c----------------------------------------------------------------------- -c Depthts: -c -------- - - REAL fz,rk,fz1,rk1,rk2 - fz(rk)=fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) - pfluxgrd(:) = 0. -c calcul de l'inertie thermique a partir de la variable rnat. -c on initialise a iice meme au-dessus d'un point de mer au cas -c ou le point de mer devienne point de glace au pas suivant -c on corrige si on a un point de terre avec ou sans glace -c - IF (indice.EQ.is_sic) THEN - DO ig = 1, knon - ztherm_i(ig) = iice - IF (snow(ig).GT.0.0) ztherm_i(ig) = isno - ENDDO - ELSE IF (indice.EQ.is_lic) THEN - DO ig = 1, knon - ztherm_i(ig) = iice - IF (snow(ig).GT.0.0) ztherm_i(ig) = isno - ENDDO - ELSE IF (indice.EQ.is_ter) THEN - DO ig = 1, knon - ztherm_i(ig) = isol - IF (snow(ig).GT.0.0) ztherm_i(ig) = isno - ENDDO - ELSE IF (indice.EQ.is_oce) THEN - DO ig = 1, knon - ztherm_i(ig) = iice - ENDDO - ELSE - PRINT*, "valeur d indice non prevue", indice - stop 1 - ENDIF - - -c$$$ IF (firstcall) THEN - IF (firstsurf(indice)) THEN - -c----------------------------------------------------------------------- -c ground levels -c grnd=z/l where l is the skin depth of the diurnal cycle: -c -------------------------------------------------------- - - min_period=1800. ! en secondes - dalph_soil=2. ! rapport entre les epaisseurs de 2 couches succ. - - OPEN(99,file='soil.def',status='old',form='formatted',err=9999) - READ(99,*) min_period - READ(99,*) dalph_soil - PRINT*,'Discretization for the soil model' - PRINT*,'First level e-folding depth',min_period, - s ' dalph',dalph_soil - CLOSE(99) -9999 CONTINUE - -c la premiere couche represente un dixieme de cycle diurne - fz1=sqrt(min_period/3.14) - - DO jk=1,nsoilmx - rk1=jk - rk2=jk-1 - dz2(jk)=fz(rk1)-fz(rk2) - ENDDO - DO jk=1,nsoilmx-1 - rk1=jk+.5 - rk2=jk-.5 - dz1(jk)=1./(fz(rk1)-fz(rk2)) - ENDDO - lambda=fz(.5)*dz1(1) - PRINT*,'full layers, intermediate layers (seconds)' - DO jk=1,nsoilmx - rk=jk - rk1=jk+.5 - rk2=jk-.5 - PRINT *,'fz=', - . fz(rk1)*fz(rk2)*3.14,fz(rk)*fz(rk)*3.14 - ENDDO -C PB - firstsurf(indice) = .FALSE. -c$$$ firstcall =.false. - -c Initialisations: -c ---------------- - - ELSE !--not firstcall -c----------------------------------------------------------------------- -c Computation of the soil temperatures using the Cgrd and Dgrd -c coefficient computed at the previous time-step: -c ----------------------------------------------- - -c surface temperature - DO ig=1,knon - ptsoil(ig,1)=(lambda*zc(ig,1,indice)+ptsrf(ig))/ - s (lambda*(1.-zd(ig,1,indice))+1.) - ENDDO - -c other temperatures - DO jk=1,nsoilmx-1 - DO ig=1,knon - ptsoil(ig,jk+1)=zc(ig,jk,indice)+zd(ig,jk,indice) - $ *ptsoil(ig,jk) - ENDDO - ENDDO - - ENDIF !--not firstcall -c----------------------------------------------------------------------- -c Computation of the Cgrd and Dgrd coefficient for the next step: -c --------------------------------------------------------------- - -c$$$ PB ajout pour cas glace de mer - IF (indice .EQ. is_sic) THEN - DO ig = 1 , knon - ptsoil(ig,nsoilmx) = RTT - 1.8 - END DO - ENDIF - - DO jk=1,nsoilmx - zdz2(jk)=dz2(jk)/ptimestep - ENDDO - - DO ig=1,knon - z1(ig,indice)=zdz2(nsoilmx)+dz1(nsoilmx-1) - zc(ig,nsoilmx-1,indice)= - $ zdz2(nsoilmx)*ptsoil(ig,nsoilmx)/z1(ig,indice) - zd(ig,nsoilmx-1,indice)=dz1(nsoilmx-1)/z1(ig,indice) - ENDDO - - DO jk=nsoilmx-1,2,-1 - DO ig=1,knon - z1(ig,indice)=1./(zdz2(jk)+dz1(jk-1)+dz1(jk) - $ *(1.-zd(ig,jk,indice))) - zc(ig,jk-1,indice)= - s (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*zc(ig,jk,indice)) - $ *z1(ig,indice) - zd(ig,jk-1,indice)=dz1(jk-1)*z1(ig,indice) - ENDDO - ENDDO - -c----------------------------------------------------------------------- -c computation of the surface diffusive flux from ground and -c calorific capacity of the ground: -c --------------------------------- - - DO ig=1,knon - pfluxgrd(ig)=ztherm_i(ig)*dz1(1)* - s (zc(ig,1,indice)+(zd(ig,1,indice)-1.)*ptsoil(ig,1)) - pcapcal(ig)=ztherm_i(ig)* - s (dz2(1)+ptimestep*(1.-zd(ig,1,indice))*dz1(1)) - z1(ig,indice)=lambda*(1.-zd(ig,1,indice))+1. - pcapcal(ig)=pcapcal(ig)/z1(ig,indice) - pfluxgrd(ig) = pfluxgrd(ig) - s + pcapcal(ig) * (ptsoil(ig,1) * z1(ig,indice) - $ - lambda * zc(ig,1,indice) - $ - ptsrf(ig)) - s /ptimestep - ENDDO +module soil_m - RETURN - END + IMPLICIT NONE + +contains + + SUBROUTINE soil(nisurf, snow, tsurf, tsoil, soilcap, soilflux) + + ! From LMDZ4/libf/phylmd/soil.F, version 1.1.1.1, 2004/05/19 + + ! Author: Frederic Hourdin, January 30th, 1992 + + ! Object: computation of the soil temperature evolution, the heat + ! capacity per unit surface and the surface conduction flux + + ! Method: implicit time integration + + ! Consecutive ground temperatures are related by: + ! T(k + 1) = C(k) + D(k) * T(k) (1) + ! The coefficients C and D are computed at the t - dt time-step. + ! Structure of the procedure: + ! 1) new temperatures are computed using (1) + ! 2) C and D coefficients are computed from the new temperature + ! profile for the t + dt time-step + ! 3) the coefficients A and B are computed where the diffusive + ! fluxes at the t + dt time-step is given by + ! Fdiff = A + B Ts(t + dt) + ! or + ! Fdiff = F0 + Soilcap (Ts(t + dt) - Ts(t)) / dt + ! with + ! F0 = A + B (Ts(t)) + ! Soilcap = B * dt + + use comconst, only: dtphys + USE indicesol, only: nbsrf, is_lic, is_oce, is_sic, is_ter + USE dimphy, only: klon + USE dimsoil, only: nsoilmx + USE suphec_m, only: rtt + + INTEGER, intent(in):: nisurf ! sub-surface index + REAL, intent(in):: snow(:) ! (knon) + REAL, intent(in):: tsurf(:) ! (knon) surface temperature at time-step t (K) + + real, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) + ! temperature inside the ground (K) + + REAL, intent(out):: soilcap(:) ! (knon) + ! specific heat per unit surface (W m-2 s K-1) + + REAL, intent(out):: soilflux(:) ! (knon) + ! surface diffusive flux from ground (W m-2) + + ! Local: + + INTEGER knon, ig, jk + REAL zdz2(nsoilmx) + real z1(size(tsurf), nbsrf) ! (knon, nbsrf) + REAL min_period, dalph_soil + REAL ztherm_i(size(tsurf)) ! (knon) + REAL, save:: dz1(nsoilmx), dz2(nsoilmx) + REAL, save:: zc(klon, nsoilmx, nbsrf), zd(klon, nsoilmx, nbsrf) + REAL, save:: lambda + LOGICAL:: firstsurf(nbsrf) = .TRUE. + REAL:: isol = 2000., isno = 2000., iice = 2000. + + ! Depths: + REAL rk, fz1, rk1, rk2 + + !----------------------------------------------------------------------- + + knon = size(tsurf) + + ! Calcul de l'inertie thermique. On initialise \`a iice m\^eme + ! au-dessus d'un point de mer au cas o\`u le point de mer devienne + ! point de glace au pas suivant. On corrige si on a un point de + ! terre avec ou sans glace. + + IF (nisurf==is_sic) THEN + DO ig = 1, knon + ztherm_i(ig) = iice + IF (snow(ig) > 0.0) ztherm_i(ig) = isno + END DO + ELSE IF (nisurf==is_lic) THEN + DO ig = 1, knon + ztherm_i(ig) = iice + IF (snow(ig) > 0.0) ztherm_i(ig) = isno + END DO + ELSE IF (nisurf==is_ter) THEN + DO ig = 1, knon + ztherm_i(ig) = isol + IF (snow(ig) > 0.0) ztherm_i(ig) = isno + END DO + ELSE IF (nisurf==is_oce) THEN + DO ig = 1, knon + ztherm_i(ig) = iice + END DO + ELSE + PRINT *, 'valeur d indice non prevue', nisurf + STOP 1 + END IF + + IF (firstsurf(nisurf)) THEN + ! ground levels + ! grnd=z / l where l is the skin depth of the diurnal cycle: + + min_period = 1800. ! en secondes + dalph_soil = 2. ! rapport entre les epaisseurs de 2 couches succ. + + OPEN(99, FILE='soil.def', STATUS='old', FORM='formatted', ERR=9999) + READ(99, *) min_period + READ(99, *) dalph_soil + PRINT *, 'Discretization for the soil model' + PRINT *, 'First level e-folding depth', min_period, ' dalph', & + dalph_soil + CLOSE(99) +9999 CONTINUE + + ! la premiere couche represente un dixieme de cycle diurne + fz1 = sqrt(min_period / 3.14) + + DO jk = 1, nsoilmx + rk1 = jk + rk2 = jk - 1 + dz2(jk) = fz(rk1) - fz(rk2) + END DO + DO jk = 1, nsoilmx - 1 + rk1 = jk + .5 + rk2 = jk - .5 + dz1(jk) = 1. / (fz(rk1) - fz(rk2)) + END DO + lambda = fz(.5) * dz1(1) + PRINT *, 'full layers, intermediate layers (seconds)' + DO jk = 1, nsoilmx + rk = jk + rk1 = jk + .5 + rk2 = jk - .5 + PRINT *, 'fz=', fz(rk1) * fz(rk2) * 3.14, fz(rk) * fz(rk) * 3.14 + END DO + ! PB + firstsurf(nisurf) = .FALSE. + ELSE + ! Computation of the soil temperatures using the Zc and Zd + ! coefficient computed at the previous time-step: + + ! surface temperature + DO ig = 1, knon + tsoil(ig, 1) = (lambda * zc(ig, 1, nisurf) + tsurf(ig)) & + / (lambda * (1. - zd(ig, 1, nisurf)) + 1.) + END DO + + ! other temperatures + DO jk = 1, nsoilmx - 1 + DO ig = 1, knon + tsoil(ig, jk + 1) = zc(ig, jk, nisurf) & + + zd(ig, jk, nisurf) * tsoil(ig, jk) + END DO + END DO + END IF + + ! Computation of the Zc and Zd coefficient for the next step: + + IF (nisurf==is_sic) THEN + DO ig = 1, knon + tsoil(ig, nsoilmx) = rtt - 1.8 + END DO + END IF + + DO jk = 1, nsoilmx + zdz2(jk) = dz2(jk) / dtphys + END DO + + DO ig = 1, knon + z1(ig, nisurf) = zdz2(nsoilmx) + dz1(nsoilmx - 1) + zc(ig, nsoilmx - 1, nisurf) = zdz2(nsoilmx) * tsoil(ig, nsoilmx) / & + z1(ig, nisurf) + zd(ig, nsoilmx - 1, nisurf) = dz1(nsoilmx - 1) / z1(ig, nisurf) + END DO + + DO jk = nsoilmx - 1, 2, - 1 + DO ig = 1, knon + z1(ig, nisurf) = 1. / (zdz2(jk) + dz1(jk - 1) & + + dz1(jk) * (1. - zd(ig, jk, nisurf))) + zc(ig, jk - 1, nisurf) = (tsoil(ig, jk) * zdz2(jk) & + + dz1(jk) * zc(ig, jk, nisurf)) * z1(ig, nisurf) + zd(ig, jk - 1, nisurf) = dz1(jk - 1) * z1(ig, nisurf) + END DO + END DO + + ! computation of the surface diffusive flux from ground and + ! calorific capacity of the ground: + + DO ig = 1, knon + soilflux(ig) = ztherm_i(ig) * dz1(1) * (zc(ig, 1, nisurf) + (zd(ig, 1, & + nisurf) - 1.) * tsoil(ig, 1)) + soilcap(ig) = ztherm_i(ig) * (dz2(1) & + + dtphys * (1. - zd(ig, 1, nisurf)) * dz1(1)) + z1(ig, nisurf) = lambda * (1. - zd(ig, 1, nisurf)) + 1. + soilcap(ig) = soilcap(ig) / z1(ig, nisurf) + soilflux(ig) = soilflux(ig) + soilcap(ig) * (tsoil(ig, 1) & + * z1(ig, nisurf) - lambda * zc(ig, 1, nisurf) - tsurf(ig)) / dtphys + END DO + + contains + + pure real function fz(rk) + + real, intent(in):: rk + + !----------------------------------------- + + fz = fz1 * (dalph_soil**rk - 1.) / (dalph_soil - 1.) + + end function fz + + END SUBROUTINE soil + +end module soil_m