--- trunk/phylmd/yamada4.f 2014/12/18 17:30:24 118 +++ trunk/Sources/phylmd/yamada4.f 2018/01/08 14:12:02 251 @@ -8,131 +8,128 @@ contains - SUBROUTINE yamada4(ngrid, dt, g, zlev, zlay, u, v, teta, cd, q2, km, kn, kq, & - ustar, iflag_pbl) + SUBROUTINE yamada4(dt, zlev, zlay, u, v, teta, q2, km, kn, ustar) ! From LMDZ4/libf/phylmd/yamada4.F, version 1.1 2004/06/22 11:45:36 - use nr_util, only: assert + USE conf_phys_m, ONLY: iflag_pbl USE dimphy, ONLY: klev + use nr_util, only: assert, assert_eq + USE suphec_m, ONLY: rg - integer, intent(in):: ngrid REAL, intent(in):: dt ! pas de temps - real, intent(in):: g - REAL zlev(ngrid, klev+1) - ! altitude à chaque niveau (interface inférieure de la couche de - ! même indice) + REAL zlev(:, :) ! (knon, klev + 1) + ! altitude \`a chaque niveau (interface inf\'erieure de la couche de + ! m\^eme indice) + + REAL, intent(in):: zlay(:, :) ! (knon, klev) altitude au centre de + ! chaque couche + + REAL, intent(in):: u(:, :), v(:, :) ! (knon, klev) + ! vitesse au centre de chaque couche (en entr\'ee : la valeur au + ! d\'ebut du pas de temps) + + REAL, intent(in):: teta(:, :) ! (knon, klev) + ! temp\'erature potentielle au centre de chaque couche (en entr\'ee : + ! la valeur au d\'ebut du pas de temps) - REAL zlay(ngrid, klev) ! altitude au centre de chaque couche - - REAL u(ngrid, klev), v(ngrid, klev) - ! vitesse au centre de chaque couche (en entrée : la valeur au - ! début du pas de temps) - - REAL, intent(in): teta(ngrid, klev) - ! température potentielle au centre de chaque couche (en entrée : - ! la valeur au début du pas de temps) - - REAL, intent(in):: cd(:) ! (ngrid) cdrag, valeur au début du pas de temps - - REAL, intent(inout):: q2(ngrid, klev+1) + REAL, intent(inout):: q2(:, :) ! (knon, klev + 1) ! $q^2$ au bas de chaque couche - ! En entrée : la valeur au début du pas de temps ; en sortie : la - ! valeur à la fin du pas de temps. + ! En entr\'ee : la valeur au d\'ebut du pas de temps ; en sortie : la + ! valeur \`a la fin du pas de temps. - REAL km(ngrid, klev+1) - ! diffusivité turbulente de quantité de mouvement (au bas de - ! chaque couche) (en sortie : la valeur à la fin du pas de temps) - - REAL kn(ngrid, klev+1) - ! diffusivité turbulente des scalaires (au bas de chaque couche) - ! (en sortie : la valeur à la fin du pas de temps) - - REAL kq(ngrid, klev+1) - real ustar(ngrid) - - integer iflag_pbl - ! iflag_pbl doit valoir entre 6 et 9 - ! l = 6, on prend systématiquement une longueur d'équilibre - ! iflag_pbl = 6 : MY 2.0 - ! iflag_pbl = 7 : MY 2.0.Fournier - ! iflag_pbl = 8 : MY 2.5 - ! iflag_pbl = 9 : un test ? + REAL, intent(out):: km(:, 2:) ! (knon, 2:klev) + ! diffusivit\'e turbulente de quantit\'e de mouvement (au bas de + ! chaque couche) (en sortie : la valeur \`a la fin du pas de temps) + + REAL, intent(out):: kn(:, 2:) ! (knon, 2:klev) + ! diffusivit\'e turbulente des scalaires (au bas de chaque couche) + ! (en sortie : la valeur \`a la fin du pas de temps) - ! Local: + real, intent(in):: ustar(:) ! (knon) - real kmin, qmin, pblhmin(ngrid), coriol(ngrid) + ! Local: + integer knon + real kmin, qmin + real pblhmin(size(ustar)), coriol(size(ustar)) ! (knon) real qpre - REAL unsdz(ngrid, klev) - REAL unsdzdec(ngrid, klev+1) - REAL kmpre(ngrid, klev+1), tmp2 - REAL mpre(ngrid, klev+1) - real delta(ngrid, klev+1) - real aa(ngrid, klev+1), aa0, aa1 - integer, PARAMETER:: nlev = klev+1 + REAL unsdz(size(zlay, 1), size(zlay, 2)) ! (knon, klev) + REAL unsdzdec(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) + real delta(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) + real aa(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) + real aa1 logical:: first = .true. integer:: ipas = 0 integer ig, k real ri - real rif(ngrid, klev+1), sm(ngrid, klev+1), alpha(ngrid, klev) - real m2(ngrid, klev+1), dz(ngrid, klev+1), zq, n2(ngrid, klev+1) - real dtetadz(ngrid, klev+1) - real m2cstat, mcstat, kmcstat - real l(ngrid, klev+1) - real, save:: l0(ngrid) - real sq(ngrid), sqz(ngrid), zz(ngrid, klev+1) + real, dimension(size(zlev, 1), size(zlev, 2)):: rif, sm ! (knon, klev + 1) + real alpha(size(zlay, 1), size(zlay, 2)) ! (knon, klev) + + real, dimension(size(zlev, 1), size(zlev, 2)):: m2, dz, n2 + ! (knon, klev + 1) + + real zq + real dtetadz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) + real l(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) + real l0(size(ustar)) ! (knon) + real sq(size(ustar)), sqz(size(ustar)) ! (knon) + real zz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) integer iter - real:: ric = 0.195, rifc = 0.191, b1 = 16.6, kap = 0.4 - real rino(ngrid, klev+1), smyam(ngrid, klev), styam(ngrid, klev) - real lyam(ngrid, klev), knyam(ngrid, klev) + real:: ric = 0.195, rifc = 0.191, b1 = 16.6 !----------------------------------------------------------------------- - call assert(iflag_pbl >= 6 .and. iflag_pbl <= 9, "yamada4") + call assert(any(iflag_pbl == [6, 8, 9]), "yamada4 iflag_pbl") + knon = assert_eq([size(zlev, 1), size(zlay, 1), size(u, 1), size(v, 1), & + size(teta, 1), size(ustar), size(q2, 1), size(km, 1), size(kn, 1)], & + "yamada4 knon") + call assert(klev == [size(zlev, 2) - 1, size(zlay, 2), size(u, 2), & + size(v, 2), size(teta, 2), size(q2, 2) - 1, size(km, 2) + 1, & + size(kn, 2) + 1], "yamada4 klev") - ipas = ipas+1 + ipas = ipas + 1 ! les increments verticaux - DO ig = 1, ngrid - ! alerte: zlev n'est pas declare a nlev - zlev(ig, nlev) = zlay(ig, klev) +(zlay(ig, klev) - zlev(ig, nlev-1)) + DO ig = 1, knon + ! alerte: zlev n'est pas declare a klev + 1 + zlev(ig, klev + 1) = zlay(ig, klev) + (zlay(ig, klev) - zlev(ig, klev)) ENDDO DO k = 1, klev - DO ig = 1, ngrid - unsdz(ig, k) = 1.E+0/(zlev(ig, k+1)-zlev(ig, k)) + DO ig = 1, knon + unsdz(ig, k) = 1.E+0/(zlev(ig, k + 1)-zlev(ig, k)) ENDDO ENDDO - DO ig = 1, ngrid + DO ig = 1, knon unsdzdec(ig, 1) = 1.E+0/(zlay(ig, 1)-zlev(ig, 1)) ENDDO DO k = 2, klev - DO ig = 1, ngrid + DO ig = 1, knon unsdzdec(ig, k) = 1.E+0/(zlay(ig, k)-zlay(ig, k-1)) ENDDO ENDDO - DO ig = 1, ngrid - unsdzdec(ig, klev+1) = 1.E+0/(zlev(ig, klev+1)-zlay(ig, klev)) + DO ig = 1, knon + unsdzdec(ig, klev + 1) = 1.E+0/(zlev(ig, klev + 1)-zlay(ig, klev)) ENDDO do k = 2, klev - do ig = 1, ngrid + do ig = 1, knon dz(ig, k) = zlay(ig, k)-zlay(ig, k-1) - m2(ig, k) = ((u(ig, k)-u(ig, k-1))**2+(v(ig, k)-v(ig, k-1))**2) & + m2(ig, k) = ((u(ig, k)-u(ig, k-1))**2 + (v(ig, k)-v(ig, k-1))**2) & /(dz(ig, k)*dz(ig, k)) dtetadz(ig, k) = (teta(ig, k)-teta(ig, k-1))/dz(ig, k) - n2(ig, k) = g*2.*dtetadz(ig, k)/(teta(ig, k-1)+teta(ig, k)) + n2(ig, k) = rg*2.*dtetadz(ig, k)/(teta(ig, k-1) + teta(ig, k)) ri = n2(ig, k)/max(m2(ig, k), 1.e-10) if (ri.lt.ric) then rif(ig, k) = frif(ri) else rif(ig, k) = rifc endif - if(rif(ig, k).lt.0.16) then + if (rif(ig, k).lt.0.16) then alpha(ig, k) = falpha(rif(ig, k)) sm(ig, k) = fsm(rif(ig, k)) else @@ -143,27 +140,27 @@ enddo enddo - ! Au premier appel, on détermine l et q2 de façon itérative. - ! Itération pour déterminer la longueur de mélange + ! Au premier appel, on d\'etermine l et q2 de fa\ccon it\'erative. + ! It\'eration pour d\'eterminer la longueur de m\'elange if (first .or. iflag_pbl == 6) then - do ig = 1, ngrid + do ig = 1, knon l0(ig) = 10. enddo do k = 2, klev-1 - do ig = 1, ngrid + do ig = 1, knon l(ig, k) = l0(ig) * kap * zlev(ig, k) & / (kap * zlev(ig, k) + l0(ig)) enddo enddo do iter = 1, 10 - do ig = 1, ngrid + do ig = 1, knon sq(ig) = 1e-10 sqz(ig) = 1e-10 enddo do k = 2, klev-1 - do ig = 1, ngrid + do ig = 1, knon q2(ig, k) = l(ig, k)**2 * zz(ig, k) l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k)) zq = sqrt(q2(ig, k)) @@ -172,7 +169,7 @@ sq(ig) = sq(ig) + zq * (zlay(ig, k) - zlay(ig, k-1)) enddo enddo - do ig = 1, ngrid + do ig = 1, knon l0(ig) = 0.2 * sqz(ig) / sq(ig) enddo enddo @@ -181,97 +178,54 @@ ! Calcul de la longueur de melange. ! Mise a jour de l0 - do ig = 1, ngrid + do ig = 1, knon sq(ig) = 1.e-10 sqz(ig) = 1.e-10 enddo do k = 2, klev-1 - do ig = 1, ngrid + do ig = 1, knon zq = sqrt(q2(ig, k)) - sqz(ig) = sqz(ig)+zq*zlev(ig, k)*(zlay(ig, k)-zlay(ig, k-1)) - sq(ig) = sq(ig)+zq*(zlay(ig, k)-zlay(ig, k-1)) + sqz(ig) = sqz(ig) + zq*zlev(ig, k)*(zlay(ig, k)-zlay(ig, k-1)) + sq(ig) = sq(ig) + zq*(zlay(ig, k)-zlay(ig, k-1)) enddo enddo - do ig = 1, ngrid + do ig = 1, knon l0(ig) = 0.2*sqz(ig)/sq(ig) enddo ! calcul de l(z) do k = 2, klev - do ig = 1, ngrid + do ig = 1, knon l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k)) - if(first) then + if (first) then q2(ig, k) = l(ig, k)**2 * zz(ig, k) endif enddo enddo - ! Yamada 2.0 if (iflag_pbl == 6) then + ! Yamada 2.0 do k = 2, klev - do ig = 1, ngrid + do ig = 1, knon q2(ig, k) = l(ig, k)**2 * zz(ig, k) enddo enddo - else if (iflag_pbl == 7) then - ! Yamada 2.Fournier - - ! Calcul de l, km, au pas precedent - do k = 2, klev - do ig = 1, ngrid - delta(ig, k) = q2(ig, k) / (l(ig, k)**2 * sm(ig, k)) - kmpre(ig, k) = l(ig, k) * sqrt(q2(ig, k)) * sm(ig, k) - mpre(ig, k) = sqrt(m2(ig, k)) - enddo - enddo - - do k = 2, klev-1 - do ig = 1, ngrid - m2cstat = max(alpha(ig, k)*n2(ig, k)+delta(ig, k)/b1, 1.e-12) - mcstat = sqrt(m2cstat) - - ! puis on ecrit la valeur de q qui annule l'equation de m - ! supposee en q3 - - IF (k == 2) THEN - kmcstat = 1.E+0 / mcstat & - *(unsdz(ig, k)*kmpre(ig, k+1) & - *mpre(ig, k+1) & - +unsdz(ig, k-1) & - *cd(ig) & - *(sqrt(u(ig, 3)**2+v(ig, 3)**2) & - -mcstat/unsdzdec(ig, k) & - -mpre(ig, k+1)/unsdzdec(ig, k+1))**2) & - /(unsdz(ig, k)+unsdz(ig, k-1)) - ELSE - kmcstat = 1.E+0 / mcstat & - *(unsdz(ig, k)*kmpre(ig, k+1) & - *mpre(ig, k+1) & - +unsdz(ig, k-1)*kmpre(ig, k-1) & - *mpre(ig, k-1)) & - /(unsdz(ig, k)+unsdz(ig, k-1)) - ENDIF - tmp2 = kmcstat / (sm(ig, k) / q2(ig, k)) /l(ig, k) - q2(ig, k) = max(tmp2, 1.e-12)**(2./3.) - enddo - enddo else if (iflag_pbl >= 8) then ! Yamada 2.5 a la Didi ! Calcul de l, km, au pas precedent do k = 2, klev - do ig = 1, ngrid + do ig = 1, knon delta(ig, k) = q2(ig, k)/(l(ig, k)**2*sm(ig, k)) if (delta(ig, k).lt.1.e-20) then delta(ig, k) = 1.e-20 endif km(ig, k) = l(ig, k)*sqrt(q2(ig, k))*sm(ig, k) - aa0 = (m2(ig, k)-alpha(ig, k)*n2(ig, k)-delta(ig, k)/b1) aa1 = (m2(ig, k)*(1.-rif(ig, k))-delta(ig, k)/b1) aa(ig, k) = aa1*dt/(delta(ig, k)*l(ig, k)) qpre = sqrt(q2(ig, k)) if (iflag_pbl == 8) then if (aa(ig, k).gt.0.) then - q2(ig, k) = (qpre+aa(ig, k)*qpre*qpre)**2 + q2(ig, k) = (qpre + aa(ig, k)*qpre*qpre)**2 else q2(ig, k) = (qpre/(1.-aa(ig, k)*qpre))**2 endif @@ -288,13 +242,12 @@ enddo endif - ! Calcul des coefficients de mélange + ! Calcul des coefficients de m\'elange do k = 2, klev - do ig = 1, ngrid + do ig = 1, knon zq = sqrt(q2(ig, k)) km(ig, k) = l(ig, k)*zq*sm(ig, k) kn(ig, k) = km(ig, k)*alpha(ig, k) - kq(ig, k) = l(ig, k)*zq*0.2 enddo enddo @@ -304,14 +257,13 @@ ! Traitement particulier pour les cas tres stables. ! D'apres Holtslag Boville. - do ig = 1, ngrid + do ig = 1, knon coriol(ig) = 1.e-4 pblhmin(ig) = 0.07*ustar(ig)/max(abs(coriol(ig)), 2.546e-5) enddo - print *, 'pblhmin ', pblhmin do k = 2, klev - do ig = 1, ngrid + do ig = 1, knon if (teta(ig, 2).gt.teta(ig, 1)) then qmin = ustar(ig)*(max(1.-zlev(ig, k)/pblhmin(ig), 0.))**2 kmin = kap*zlev(ig, k)*qmin @@ -321,7 +273,6 @@ if (kn(ig, k).lt.kmin.or.km(ig, k).lt.kmin) then kn(ig, k) = kmin km(ig, k) = kmin - kq(ig, k) = kmin ! la longueur de melange est suposee etre l = kap z ! K = l q Sm d'ou q2 = (K/l Sm)**2 q2(ig, k) = (qmin/sm(ig, k))**2 @@ -329,13 +280,6 @@ enddo enddo - ! Diagnostique pour stokage - - rino = rif - smyam(:, 1:klev) = sm(:, 1:klev) - styam = sm(:, 1:klev)*alpha(:, 1:klev) - lyam(1:ngrid, 1:klev) = l(:, 1:klev) - first = .false. end SUBROUTINE yamada4 @@ -346,7 +290,7 @@ real, intent(in):: ri - frif = 0.6588*(ri+0.1776-sqrt(ri*ri-0.3221*ri+0.03156)) + frif = 0.6588*(ri + 0.1776-sqrt(ri*ri-0.3221*ri + 0.03156)) end function frif