/[lmdze]/trunk/phylmd/Interface_surf/yamada4.f
ViewVC logotype

Contents of /trunk/phylmd/Interface_surf/yamada4.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 302 - (show annotations)
Thu Sep 6 13:19:51 2018 UTC (5 years, 9 months ago) by guez
File size: 9928 byte(s)
In procedure physiq, rename dsens and devap to dflux_t and dflux_q so
they correspond to arguments with the same name in pbl_surface. (In
LMDZ, dsens and devap are not used in physiq, the computation of fder
is done inside pbl_surface.)

1 module yamada4_m
2
3 IMPLICIT NONE
4
5 private
6 public yamada4
7 real, parameter:: kap = 0.4
8
9 contains
10
11 SUBROUTINE yamada4(zlev, zlay, u, v, teta, q2, coefm, coefh, ustar)
12
13 ! From LMDZ4/libf/phylmd/yamada4.F, version 1.1 2004/06/22 11:45:36
14
15 ! Library:
16 use nr_util, only: assert, assert_eq
17
18 use comconst, only: dtphys
19 USE conf_phys_m, ONLY: iflag_pbl
20 USE dimphy, ONLY: klev
21 USE suphec_m, ONLY: rg
22
23 REAL zlev(:, :) ! (knon, klev + 1)
24 ! altitude \`a chaque niveau (interface inf\'erieure de la couche de
25 ! m\^eme indice)
26
27 REAL, intent(in):: zlay(:, :) ! (knon, klev) altitude au centre de
28 ! chaque couche
29
30 REAL, intent(in):: u(:, :), v(:, :) ! (knon, klev)
31 ! vitesse au centre de chaque couche (en entr\'ee : la valeur au
32 ! d\'ebut du pas de temps)
33
34 REAL, intent(in):: teta(:, :) ! (knon, klev)
35 ! temp\'erature potentielle au centre de chaque couche (en entr\'ee :
36 ! la valeur au d\'ebut du pas de temps)
37
38 REAL, intent(inout):: q2(:, :) ! (knon, klev + 1)
39 ! $q^2$ au bas de chaque couche
40 ! En entr\'ee : la valeur au d\'ebut du pas de temps ; en sortie : la
41 ! valeur \`a la fin du pas de temps.
42
43 REAL, intent(out):: coefm(:, 2:) ! (knon, 2:klev)
44 ! diffusivit\'e turbulente de quantit\'e de mouvement (au bas de
45 ! chaque couche) (en sortie : la valeur \`a la fin du pas de temps)
46
47 REAL, intent(out):: coefh(:, 2:) ! (knon, 2:klev)
48 ! diffusivit\'e turbulente des scalaires (au bas de chaque couche)
49 ! (en sortie : la valeur \`a la fin du pas de temps)
50
51 real, intent(in):: ustar(:) ! (knon)
52
53 ! Local:
54 integer knon
55 real kmin, qmin
56 real pblhmin(size(ustar)), coriol(size(ustar)) ! (knon)
57 real qpre
58 REAL unsdz(size(zlay, 1), size(zlay, 2)) ! (knon, klev)
59 REAL unsdzdec(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
60 real delta(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
61 real aa(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
62 real aa1
63 logical:: first = .true.
64 integer:: ipas = 0
65 integer ig, k
66 real ri
67 real, dimension(size(zlev, 1), size(zlev, 2)):: rif, sm ! (knon, klev + 1)
68 real alpha(size(zlay, 1), size(zlay, 2)) ! (knon, klev)
69
70 real, dimension(size(zlev, 1), size(zlev, 2)):: m2, dz, n2
71 ! (knon, klev + 1)
72
73 real zq
74 real dtetadz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
75 real l(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
76 real l0(size(ustar)) ! (knon)
77 real sq(size(ustar)), sqz(size(ustar)) ! (knon)
78 real zz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1)
79 integer iter
80 real:: ric = 0.195, rifc = 0.191, b1 = 16.6
81
82 !-----------------------------------------------------------------------
83
84 call assert(any(iflag_pbl == [6, 8, 9]), "yamada4 iflag_pbl")
85 knon = assert_eq([size(zlev, 1), size(zlay, 1), size(u, 1), size(v, 1), &
86 size(teta, 1), size(ustar), size(q2, 1), size(coefm, 1), &
87 size(coefh, 1)], "yamada4 knon")
88 call assert(klev == [size(zlev, 2) - 1, size(zlay, 2), size(u, 2), &
89 size(v, 2), size(teta, 2), size(q2, 2) - 1, size(coefm, 2) + 1, &
90 size(coefh, 2) + 1], "yamada4 klev")
91
92 ipas = ipas + 1
93
94 ! les increments verticaux
95 DO ig = 1, knon
96 ! alerte: zlev n'est pas declare a klev + 1
97 zlev(ig, klev + 1) = zlay(ig, klev) + (zlay(ig, klev) - zlev(ig, klev))
98 ENDDO
99
100 DO k = 1, klev
101 DO ig = 1, knon
102 unsdz(ig, k) = 1.E+0/(zlev(ig, k + 1)-zlev(ig, k))
103 ENDDO
104 ENDDO
105
106 DO ig = 1, knon
107 unsdzdec(ig, 1) = 1.E+0/(zlay(ig, 1)-zlev(ig, 1))
108 ENDDO
109
110 DO k = 2, klev
111 DO ig = 1, knon
112 unsdzdec(ig, k) = 1.E+0/(zlay(ig, k)-zlay(ig, k-1))
113 ENDDO
114 ENDDO
115
116 DO ig = 1, knon
117 unsdzdec(ig, klev + 1) = 1.E+0/(zlev(ig, klev + 1)-zlay(ig, klev))
118 ENDDO
119
120 do k = 2, klev
121 do ig = 1, knon
122 dz(ig, k) = zlay(ig, k)-zlay(ig, k-1)
123 m2(ig, k) = ((u(ig, k)-u(ig, k-1))**2 + (v(ig, k)-v(ig, k-1))**2) &
124 /(dz(ig, k)*dz(ig, k))
125 dtetadz(ig, k) = (teta(ig, k)-teta(ig, k-1))/dz(ig, k)
126 n2(ig, k) = rg*2.*dtetadz(ig, k)/(teta(ig, k-1) + teta(ig, k))
127 ri = n2(ig, k)/max(m2(ig, k), 1.e-10)
128 if (ri.lt.ric) then
129 rif(ig, k) = frif(ri)
130 else
131 rif(ig, k) = rifc
132 endif
133 if (rif(ig, k).lt.0.16) then
134 alpha(ig, k) = falpha(rif(ig, k))
135 sm(ig, k) = fsm(rif(ig, k))
136 else
137 alpha(ig, k) = 1.12
138 sm(ig, k) = 0.085
139 endif
140 zz(ig, k) = b1*m2(ig, k)*(1.-rif(ig, k))*sm(ig, k)
141 enddo
142 enddo
143
144 ! Au premier appel, on d\'etermine l et q2 de fa\ccon it\'erative.
145 ! It\'eration pour d\'eterminer la longueur de m\'elange
146
147 if (first .or. iflag_pbl == 6) then
148 do ig = 1, knon
149 l0(ig) = 10.
150 enddo
151 do k = 2, klev-1
152 do ig = 1, knon
153 l(ig, k) = l0(ig) * kap * zlev(ig, k) &
154 / (kap * zlev(ig, k) + l0(ig))
155 enddo
156 enddo
157
158 do iter = 1, 10
159 do ig = 1, knon
160 sq(ig) = 1e-10
161 sqz(ig) = 1e-10
162 enddo
163 do k = 2, klev-1
164 do ig = 1, knon
165 q2(ig, k) = l(ig, k)**2 * zz(ig, k)
166 l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k))
167 zq = sqrt(q2(ig, k))
168 sqz(ig) = sqz(ig) + zq * zlev(ig, k) &
169 * (zlay(ig, k) - zlay(ig, k-1))
170 sq(ig) = sq(ig) + zq * (zlay(ig, k) - zlay(ig, k-1))
171 enddo
172 enddo
173 do ig = 1, knon
174 l0(ig) = 0.2 * sqz(ig) / sq(ig)
175 enddo
176 enddo
177 endif
178
179 ! Calcul de la longueur de melange.
180
181 ! Mise a jour de l0
182 do ig = 1, knon
183 sq(ig) = 1.e-10
184 sqz(ig) = 1.e-10
185 enddo
186 do k = 2, klev-1
187 do ig = 1, knon
188 zq = sqrt(q2(ig, k))
189 sqz(ig) = sqz(ig) + zq*zlev(ig, k)*(zlay(ig, k)-zlay(ig, k-1))
190 sq(ig) = sq(ig) + zq*(zlay(ig, k)-zlay(ig, k-1))
191 enddo
192 enddo
193 do ig = 1, knon
194 l0(ig) = 0.2*sqz(ig)/sq(ig)
195 enddo
196 ! calcul de l(z)
197 do k = 2, klev
198 do ig = 1, knon
199 l(ig, k) = fl(zlev(ig, k), l0(ig), q2(ig, k), n2(ig, k))
200 if (first) then
201 q2(ig, k) = l(ig, k)**2 * zz(ig, k)
202 endif
203 enddo
204 enddo
205
206 if (iflag_pbl == 6) then
207 ! Yamada 2.0
208 do k = 2, klev
209 do ig = 1, knon
210 q2(ig, k) = l(ig, k)**2 * zz(ig, k)
211 enddo
212 enddo
213 else if (iflag_pbl >= 8) then
214 ! Yamada 2.5 a la Didi
215
216 ! Calcul de l, coefm, au pas precedent
217 do k = 2, klev
218 do ig = 1, knon
219 delta(ig, k) = q2(ig, k)/(l(ig, k)**2*sm(ig, k))
220 if (delta(ig, k).lt.1.e-20) then
221 delta(ig, k) = 1.e-20
222 endif
223 coefm(ig, k) = l(ig, k)*sqrt(q2(ig, k))*sm(ig, k)
224 aa1 = (m2(ig, k)*(1.-rif(ig, k))-delta(ig, k)/b1)
225 aa(ig, k) = aa1*dtphys/(delta(ig, k)*l(ig, k))
226 qpre = sqrt(q2(ig, k))
227 if (iflag_pbl == 8) then
228 if (aa(ig, k).gt.0.) then
229 q2(ig, k) = (qpre + aa(ig, k)*qpre*qpre)**2
230 else
231 q2(ig, k) = (qpre/(1.-aa(ig, k)*qpre))**2
232 endif
233 else
234 ! iflag_pbl = 9
235 if (aa(ig, k)*qpre.gt.0.9) then
236 q2(ig, k) = (qpre*10.)**2
237 else
238 q2(ig, k) = (qpre/(1.-aa(ig, k)*qpre))**2
239 endif
240 endif
241 q2(ig, k) = min(max(q2(ig, k), 1.e-10), 1.e4)
242 enddo
243 enddo
244 endif
245
246 ! Calcul des coefficients de m\'elange
247 do k = 2, klev
248 do ig = 1, knon
249 zq = sqrt(q2(ig, k))
250 coefm(ig, k) = l(ig, k)*zq*sm(ig, k)
251 coefh(ig, k) = coefm(ig, k)*alpha(ig, k)
252 enddo
253 enddo
254
255 ! Traitement des cas noctrunes avec l'introduction d'une longueur
256 ! minilale.
257
258 ! Traitement particulier pour les cas tres stables.
259 ! D'apres Holtslag Boville.
260
261 do ig = 1, knon
262 coriol(ig) = 1.e-4
263 pblhmin(ig) = 0.07*ustar(ig)/max(abs(coriol(ig)), 2.546e-5)
264 enddo
265
266 do k = 2, klev
267 do ig = 1, knon
268 if (teta(ig, 2).gt.teta(ig, 1)) then
269 qmin = ustar(ig)*(max(1.-zlev(ig, k)/pblhmin(ig), 0.))**2
270 kmin = kap*zlev(ig, k)*qmin
271 else
272 kmin = -1. ! kmin n'est utilise que pour les SL stables.
273 endif
274 if (coefh(ig, k).lt.kmin.or.coefm(ig, k).lt.kmin) then
275 coefh(ig, k) = kmin
276 coefm(ig, k) = kmin
277 ! la longueur de melange est suposee etre l = kap z
278 ! K = l q Sm d'ou q2 = (K/l Sm)**2
279 q2(ig, k) = (qmin/sm(ig, k))**2
280 endif
281 enddo
282 enddo
283
284 first = .false.
285
286 end SUBROUTINE yamada4
287
288 !*******************************************************************
289
290 real function frif(ri)
291
292 real, intent(in):: ri
293
294 frif = 0.6588*(ri + 0.1776-sqrt(ri*ri-0.3221*ri + 0.03156))
295
296 end function frif
297
298 !*******************************************************************
299
300 real function falpha(ri)
301
302 real, intent(in):: ri
303
304 falpha = 1.318*(0.2231-ri)/(0.2341-ri)
305
306 end function falpha
307
308 !*******************************************************************
309
310 real function fsm(ri)
311
312 real, intent(in):: ri
313
314 fsm = 1.96*(0.1912-ri)*(0.2341-ri)/((1.-ri)*(0.2231-ri))
315
316 end function fsm
317
318 !*******************************************************************
319
320 real function fl(zzz, zl0, zq2, zn2)
321
322 real, intent(in):: zzz, zl0, zq2, zn2
323
324 fl = max(min(zl0 * kap * zzz / (kap * zzz + zl0), &
325 0.5 * sqrt(zq2) / sqrt(max(zn2, 1e-10))), 1.)
326
327 end function fl
328
329 end module yamada4_m

  ViewVC Help
Powered by ViewVC 1.1.21