--- trunk/Sources/phylmd/yamada4.f 2017/11/02 15:47:03 227 +++ trunk/phylmd/Interface_surf/yamada4.f 2018/07/24 16:27:12 288 @@ -8,16 +8,16 @@ contains - SUBROUTINE yamada4(dt, g, zlev, zlay, u, v, teta, cd, q2, km, kn, kq, & - ustar, iflag_pbl) + SUBROUTINE yamada4(dt, zlev, zlay, u, v, teta, q2, coefm, coefh, ustar) ! From LMDZ4/libf/phylmd/yamada4.F, version 1.1 2004/06/22 11:45:36 - use nr_util, only: assert, assert_eq + USE conf_phys_m, ONLY: iflag_pbl USE dimphy, ONLY: klev + use nr_util, only: assert, assert_eq + USE suphec_m, ONLY: rg REAL, intent(in):: dt ! pas de temps - real, intent(in):: g REAL zlev(:, :) ! (knon, klev + 1) ! altitude \`a chaque niveau (interface inf\'erieure de la couche de @@ -34,42 +34,28 @@ ! temp\'erature potentielle au centre de chaque couche (en entr\'ee : ! la valeur au d\'ebut du pas de temps) - REAL, intent(in):: cd(:) ! (knon) cdrag, valeur au d\'ebut du pas de temps - REAL, intent(inout):: q2(:, :) ! (knon, klev + 1) ! $q^2$ au bas de chaque couche ! En entr\'ee : la valeur au d\'ebut du pas de temps ; en sortie : la ! valeur \`a la fin du pas de temps. - REAL km(:, :) ! (knon, klev + 1) + REAL, intent(out):: coefm(:, 2:) ! (knon, 2:klev) ! diffusivit\'e turbulente de quantit\'e de mouvement (au bas de ! chaque couche) (en sortie : la valeur \`a la fin du pas de temps) - REAL kn(:, :) ! (knon, klev + 1) + REAL, intent(out):: coefh(:, 2:) ! (knon, 2:klev) ! diffusivit\'e turbulente des scalaires (au bas de chaque couche) ! (en sortie : la valeur \`a la fin du pas de temps) - REAL kq(:, :) ! (knon, klev + 1) real, intent(in):: ustar(:) ! (knon) - integer, intent(in):: iflag_pbl - ! iflag_pbl doit valoir entre 6 et 9 - ! l = 6, on prend syst\'ematiquement une longueur d'\'equilibre - ! iflag_pbl = 6 : MY 2.0 - ! iflag_pbl = 7 : MY 2.0.Fournier - ! iflag_pbl = 8 : MY 2.5 - ! iflag_pbl = 9 : un test ? - ! Local: integer knon real kmin, qmin - real pblhmin(size(cd)), coriol(size(cd)) ! (knon) + real pblhmin(size(ustar)), coriol(size(ustar)) ! (knon) real qpre REAL unsdz(size(zlay, 1), size(zlay, 2)) ! (knon, klev) REAL unsdzdec(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) - REAL kmpre(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) - real tmp2 - REAL mpre(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) real delta(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) real aa(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) real aa1 @@ -85,23 +71,22 @@ real zq real dtetadz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) - real m2cstat, mcstat, kmcstat real l(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) - real l0(size(cd)) ! (knon) - real sq(size(cd)), sqz(size(cd)) ! (knon) + real l0(size(ustar)) ! (knon) + real sq(size(ustar)), sqz(size(ustar)) ! (knon) real zz(size(zlev, 1), size(zlev, 2)) ! (knon, klev + 1) integer iter real:: ric = 0.195, rifc = 0.191, b1 = 16.6 !----------------------------------------------------------------------- - call assert(iflag_pbl >= 6 .and. iflag_pbl <= 9, "yamada4 iflag_pbl") + call assert(any(iflag_pbl == [6, 8, 9]), "yamada4 iflag_pbl") knon = assert_eq([size(zlev, 1), size(zlay, 1), size(u, 1), size(v, 1), & - size(teta, 1), size(cd), size(q2, 1), size(km, 1), size(kn, 1), & - size(kq, 1)], "yamada4 knon") + size(teta, 1), size(ustar), size(q2, 1), size(coefm, 1), & + size(coefh, 1)], "yamada4 knon") call assert(klev == [size(zlev, 2) - 1, size(zlay, 2), size(u, 2), & - size(v, 2), size(teta, 2), size(q2, 2) - 1, size(km, 2) - 1, & - size(kn, 2) - 1, size(kq, 2) - 1], "yamada4 klev") + size(v, 2), size(teta, 2), size(q2, 2) - 1, size(coefm, 2) + 1, & + size(coefh, 2) + 1], "yamada4 klev") ipas = ipas + 1 @@ -137,7 +122,7 @@ m2(ig, k) = ((u(ig, k)-u(ig, k-1))**2 + (v(ig, k)-v(ig, k-1))**2) & /(dz(ig, k)*dz(ig, k)) dtetadz(ig, k) = (teta(ig, k)-teta(ig, k-1))/dz(ig, k) - n2(ig, k) = g*2.*dtetadz(ig, k)/(teta(ig, k-1) + teta(ig, k)) + n2(ig, k) = rg*2.*dtetadz(ig, k)/(teta(ig, k-1) + teta(ig, k)) ri = n2(ig, k)/max(m2(ig, k), 1.e-10) if (ri.lt.ric) then rif(ig, k) = frif(ri) @@ -217,66 +202,24 @@ enddo enddo - ! Yamada 2.0 if (iflag_pbl == 6) then + ! Yamada 2.0 do k = 2, klev do ig = 1, knon q2(ig, k) = l(ig, k)**2 * zz(ig, k) enddo enddo - else if (iflag_pbl == 7) then - ! Yamada 2.Fournier - - ! Calcul de l, km, au pas precedent - do k = 2, klev - do ig = 1, knon - delta(ig, k) = q2(ig, k) / (l(ig, k)**2 * sm(ig, k)) - kmpre(ig, k) = l(ig, k) * sqrt(q2(ig, k)) * sm(ig, k) - mpre(ig, k) = sqrt(m2(ig, k)) - enddo - enddo - - do k = 2, klev-1 - do ig = 1, knon - m2cstat = max(alpha(ig, k)*n2(ig, k) + delta(ig, k)/b1, 1.e-12) - mcstat = sqrt(m2cstat) - - ! puis on ecrit la valeur de q qui annule l'equation de m - ! supposee en q3 - - IF (k == 2) THEN - kmcstat = 1.E+0 / mcstat & - *(unsdz(ig, k)*kmpre(ig, k + 1) & - *mpre(ig, k + 1) & - + unsdz(ig, k-1) & - *cd(ig) & - *(sqrt(u(ig, 3)**2 + v(ig, 3)**2) & - -mcstat/unsdzdec(ig, k) & - -mpre(ig, k + 1)/unsdzdec(ig, k + 1))**2) & - /(unsdz(ig, k) + unsdz(ig, k-1)) - ELSE - kmcstat = 1.E+0 / mcstat & - *(unsdz(ig, k)*kmpre(ig, k + 1) & - *mpre(ig, k + 1) & - + unsdz(ig, k-1)*kmpre(ig, k-1) & - *mpre(ig, k-1)) & - /(unsdz(ig, k) + unsdz(ig, k-1)) - ENDIF - tmp2 = kmcstat / (sm(ig, k) / q2(ig, k)) /l(ig, k) - q2(ig, k) = max(tmp2, 1.e-12)**(2./3.) - enddo - enddo else if (iflag_pbl >= 8) then ! Yamada 2.5 a la Didi - ! Calcul de l, km, au pas precedent + ! Calcul de l, coefm, au pas precedent do k = 2, klev do ig = 1, knon delta(ig, k) = q2(ig, k)/(l(ig, k)**2*sm(ig, k)) if (delta(ig, k).lt.1.e-20) then delta(ig, k) = 1.e-20 endif - km(ig, k) = l(ig, k)*sqrt(q2(ig, k))*sm(ig, k) + coefm(ig, k) = l(ig, k)*sqrt(q2(ig, k))*sm(ig, k) aa1 = (m2(ig, k)*(1.-rif(ig, k))-delta(ig, k)/b1) aa(ig, k) = aa1*dt/(delta(ig, k)*l(ig, k)) qpre = sqrt(q2(ig, k)) @@ -303,9 +246,8 @@ do k = 2, klev do ig = 1, knon zq = sqrt(q2(ig, k)) - km(ig, k) = l(ig, k)*zq*sm(ig, k) - kn(ig, k) = km(ig, k)*alpha(ig, k) - kq(ig, k) = l(ig, k)*zq*0.2 + coefm(ig, k) = l(ig, k)*zq*sm(ig, k) + coefh(ig, k) = coefm(ig, k)*alpha(ig, k) enddo enddo @@ -328,10 +270,9 @@ else kmin = -1. ! kmin n'est utilise que pour les SL stables. endif - if (kn(ig, k).lt.kmin.or.km(ig, k).lt.kmin) then - kn(ig, k) = kmin - km(ig, k) = kmin - kq(ig, k) = kmin + if (coefh(ig, k).lt.kmin.or.coefm(ig, k).lt.kmin) then + coefh(ig, k) = kmin + coefm(ig, k) = kmin ! la longueur de melange est suposee etre l = kap z ! K = l q Sm d'ou q2 = (K/l Sm)**2 q2(ig, k) = (qmin/sm(ig, k))**2