--- trunk/Sources/phylmd/aaam_bud.f 2015/09/29 19:48:59 171 +++ trunk/phylmd/aaam_bud.f90 2019/06/13 14:40:06 328 @@ -4,24 +4,21 @@ contains - subroutine aaam_bud(rg, ome, plat, plon, phis, dragu, liftu, phyu, dragv, & - liftv, phyv, p, u, v, aam, torsfc) + subroutine aaam_bud(rg, ome, phis, dragu, liftu, phyu, dragv, liftv, phyv, & + p, u, v, aam, torsfc) ! Author: F. Lott (LMD/CNRS). Date: 2003/10/20. Object: Compute ! different terms of the axial AAAM budget and mountain torque. ! Only valid for regular rectangular grids. Should be called after ! "lift_noro". - USE dimens_m, ONLY : iim, jjm + USE dimensions, ONLY : iim, jjm use nr_util, only: assert_eq, assert, pi + use phyetat0_m, only: rlat, rlon USE suphec_m, ONLY: ra real, intent(in):: rg ! gravity constant real, intent(in):: ome ! Earth rotation rate - - REAL, intent(in):: plat(:), plon(:) - ! (nlon) latitude and longitude in degrees - real, intent(in):: phis(:) ! (nlon) Geopotential at the ground REAL, intent(in):: dragu(:) ! (nlon) orodrag stress (zonal) REAL, intent(in):: liftu(:) ! (nlon) orolift stress (zonal) @@ -41,7 +38,6 @@ INTEGER nlev ! number of vertical levels INTEGER i, j, k, l - REAL hadley, hadday REAL dlat, dlon ! latitude and longitude increments (radians) REAL raam(3) ! wind AAM (components 1 & 2: equatorial; component 3: axial) @@ -59,9 +55,9 @@ !------------------------------------------------------------------- - call assert(size(plat) == (/size(plon), size(phis), size(dragu), & - size(liftu), size(phyu), size(dragv), size(liftv), size(phyv), & - size(p, 1), size(u, 1), size(v, 1)/), "aaam_bud nlon") + call assert(size(phis) == (/size(dragu), size(liftu), size(phyu), & + size(dragv), size(liftv), size(phyv), size(p, 1), size(u, 1), & + size(v, 1)/), "aaam_bud nlon") nlev = assert_eq(size(p, 2) - 1, size(u, 2), size(v, 2), "aaam_bud nlev") if (iim + 1 > 801 .or. jjm + 1 > 401) then @@ -69,8 +65,6 @@ stop 1 endif - hadley = 1e18 - hadday = 1e18 * 24. * 3600. dlat = pi / jjm dlon = 2 * pi / real(iim) @@ -91,7 +85,7 @@ vb(1, 1) = vb(1, 1) + v(1, k) * (p(1, k) - p(1, k + 1)) / rg enddo - zlat(1) = plat(1) * pi / 180. + zlat(1) = rlat(1) * pi / 180. do i = 1, iim + 1 zs(i, 1) = phis(1) / rg @@ -114,8 +108,8 @@ ssov(iim + 1, j) = dragv(l + 1) + liftv(l + 1) blsu(iim + 1, j) = phyu(l + 1) - dragu(l + 1) - liftu(l + 1) blsv(iim + 1, j) = phyv(l + 1) - dragv(l + 1) - liftv(l + 1) - zlon(iim + 1) = - plon(l + 1) * pi / 180. - zlat(j) = plat(l + 1) * pi / 180. + zlon(iim + 1) = - rlon(l + 1) * pi / 180. + zlat(j) = rlat(l + 1) * pi / 180. ub(iim + 1, j) = 0. vb(iim + 1, j) = 0. @@ -134,7 +128,7 @@ ssov(i, j) = dragv(l) + liftv(l) blsu(i, j) = phyu(l) - dragu(l) - liftu(l) blsv(i, j) = phyv(l) - dragv(l) - liftv(l) - zlon(i) = plon(l) * pi / 180. + zlon(i) = rlon(l) * pi / 180. ub(i, j) = 0. vb(i, j) = 0. @@ -154,7 +148,7 @@ ub(1, jjm + 1) = ub(1, jjm + 1) + u(l, k) * (p(l, k) - p(l, k + 1)) / rg vb(1, jjm + 1) = vb(1, jjm + 1) + v(l, k) * (p(l, k) - p(l, k + 1)) / rg enddo - zlat(jjm + 1) = plat(l) * pi / 180. + zlat(jjm + 1) = rlat(l) * pi / 180. do i = 1, iim + 1 zs(i, jjm + 1) = phis(l) / rg