--- trunk/phylmd/clcdrag.f 2018/02/05 10:39:38 254 +++ trunk/phylmd/clcdrag.f 2018/07/11 16:50:27 274 @@ -4,88 +4,102 @@ contains - SUBROUTINE clcdrag(nsrf, u, v, t, q, zgeop, ts, qsurf, rugos, pcfm, pcfh) + SUBROUTINE clcdrag(nsrf, speed, t, q, zgeop, psol, ts, qsurf, rugos, pcfm, & + pcfh, pref) ! From LMDZ4/libf/phylmd/clcdrag.F90, version 1.1.1.1, 2004/05/19 12:53:07 - ! Objet : calcul des cdrags pour le moment (pcfm) et les flux de - ! chaleur sensible et latente (pcfh). - ! Calculer le frottement au sol (Cdrag) + ! Objet : calcul des drag coefficients au sol pour le moment et + ! les flux de chaleur sensible et latente et calcul de la pression + ! au niveau de reference. - USE indicesol, ONLY: is_oce + ! I. Musat, 01 Jul 2002 + + use clesphys, only: f_cdrag_oce, f_cdrag_ter + use indicesol, only: is_oce use nr_util, only: assert_eq - USE suphec_m, ONLY: rcpd, retv, rg + use SUPHEC_M, only: rcpd, rd, retv, rg USE yoethf_m, ONLY: rvtmp2 INTEGER, intent(in):: nsrf ! indice pour le type de surface - REAL, intent(in):: u(:), v(:) ! (knon) vent au 1er niveau du mod\`ele + REAL, intent(in):: speed(:) ! (knon) + ! norm of the wind at the first model level REAL, intent(in):: t(:) ! (knon) ! temperature de l'air au 1er niveau du modele REAL, intent(in):: q(:) ! (knon) ! humidite de l'air au 1er niveau du modele - REAL, intent(in):: zgeop(:) ! (knon) géopotentiel au 1er niveau du modèle + + REAL, intent(in):: zgeop(:) ! (knon) + ! g\'eopotentiel au 1er niveau du mod\`ele + + REAL, intent(in) :: psol(:) ! (knon) pression au sol REAL, intent(in):: ts(:) ! (knon) temperature de l'air a la surface REAL, intent(in):: qsurf(:) ! (knon) humidite de l'air a la surface REAL, intent(in):: rugos(:) ! (knon) rugosit\'e - REAL, intent(out):: pcfm(:) ! (knon) cdrag pour le moment + REAL, intent(out):: pcfm(:) ! (knon) drag coefficient pour le moment REAL, intent(out):: pcfh(:) ! (knon) - ! cdrag pour les flux de chaleur latente et sensible + ! drag coefficient pour les flux de chaleur latente et sensible - ! Local: + REAL, intent(out), optional:: pref(:) ! (knon) pression au niveau zgeop/RG - ! Quelques constantes et options: + ! Local: REAL, PARAMETER:: ckap=0.40, cb=5.0, cc=5.0, cd=5.0, cepdu2=0.1**2 - - INTEGER:: i, knon - REAL:: zdu2, ztsolv, ztvd, zscf - REAL:: zucf, zcr - REAL:: friv, frih - REAL, dimension(size(u)):: zcfm1, zcfm2 - REAL, dimension(size(u)):: zcfh1, zcfh2 - REAL, dimension(size(u)):: zcdn - REAL, dimension(size(u)):: zri - - !-------------------------------------------------------------------- - - knon = assert_eq([size(u), size(v), size(t), size(q), size(zgeop), & - size(ts), size(qsurf), size(rugos), size(pcfm), size(pcfh), & - size(pcfm)], "clcdrag knon") + INTEGER i, knon + REAL zdu2, ztsolv, ztvd, zscf, zucf, zcr, friv, frih + REAL zcfm1, zcfh1, zcfm2, zcfh2 + real zcdn ! drag coefficient neutre + + REAL zri + ! nb. Richardson entre la surface et la couche zgeop/RG + ! nombre de Richardson entre la surface et le niveau de reference (zri) + + !------------------------------------------------------------------------- + + knon = assert_eq([size(speed), size(t), size(q), size(zgeop), size(ts), & + size(qsurf), size(rugos), size(pcfm), size(pcfh), size(pcfm)], & + "clcdrag knon") DO i = 1, knon - zdu2 = max(cepdu2,u(i)**2+v(i)**2) - ztsolv = ts(i) * (1.0+RETV*qsurf(i)) - ztvd = (t(i)+zgeop(i)/RCPD/(1.+RVTMP2*q(i))) & - *(1.+RETV*q(i)) - zri(i) = zgeop(i)*(ztvd-ztsolv)/(zdu2*ztvd) - zcdn(i) = (ckap/log(1.+zgeop(i)/(RG*rugos(i))))**2 - - IF (zri(i) .gt. 0.) THEN - ! situation stable - zri(i) = min(20.,zri(i)) - zscf = SQRT(1.+cd*ABS(zri(i))) - FRIV = AMAX1(1. / (1.+2.*CB*zri(i)/ZSCF), 0.1) - zcfm1(i) = zcdn(i) * FRIV - FRIH = AMAX1(1./ (1.+3.*CB*zri(i)*ZSCF), 0.1 ) - zcfh1(i) = 0.8 * zcdn(i) * FRIH - pcfm(i) = zcfm1(i) - pcfh(i) = zcfh1(i) - ELSE + zdu2 = max(cepdu2, speed(i)**2) + ztsolv = ts(i) * (1. + RETV * max(qsurf(i), 0.)) + ztvd = (t(i)+zgeop(i)/RCPD/(1.+RVTMP2*q(i))) *(1.+RETV*q(i)) + zri = zgeop(i)*(ztvd-ztsolv)/(zdu2*ztvd) + zcdn = (ckap/log(1.+zgeop(i)/(RG*rugos(i))))**2 + + IF (zri > 0.) THEN + ! Situation stable. Pour eviter les inconsistances dans les cas + ! tres stables on limite zri a 20. cf Hess et al. (1995). + zri = min(20., zri) + zscf = SQRT(1.+cd*ABS(zri)) + friv = max(1. / (1.+2.*CB*zri/ zscf), 0.1) + zcfm1 = zcdn * friv + frih = max(1./ (1.+3.*CB*zri*zscf), 0.1) + zcfh1 = f_cdrag_ter * zcdn * frih + IF (nsrf == is_oce) zcfh1 = f_cdrag_oce * zcdn * frih + pcfm(i) = zcfm1 + pcfh(i) = zcfh1 + ELSE ! situation instable - zucf = 1./(1.+3.0*cb*cc*zcdn(i)*SQRT(ABS(zri(i)) & + zucf = 1./(1.+3.0*cb*cc*zcdn*SQRT(ABS(zri) & *(1.0+zgeop(i)/(RG*rugos(i))))) - zcfm2(i) = zcdn(i)*amax1((1.-2.0*cb*zri(i)*zucf),0.1) - zcfh2(i) = 0.8 * zcdn(i)*amax1((1.-3.0*cb*zri(i)*zucf),0.1) - pcfm(i) = zcfm2(i) - pcfh(i) = zcfh2(i) - zcr = (0.0016/(zcdn(i)*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) - IF(nsrf == is_oce) pcfh(i) = 0.8 * zcdn(i) & + zcfm2 = zcdn*max((1.-2.0*cb*zri*zucf), 0.1) + zcfh2 = f_cdrag_ter * zcdn*max((1.-3.0*cb*zri*zucf), 0.1) + pcfm(i) = zcfm2 + pcfh(i) = zcfh2 + + ! pcfh sur l'ocean cf. Miller et al. (1992) + zcr = (0.0016/(zcdn*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) + IF (nsrf == is_oce) pcfh(i) = f_cdrag_oce * zcdn & * (1. + zcr**1.25)**(1. / 1.25) ENDIF END DO + if (present(pref)) & + pref = exp(log(psol) - zgeop / (RD * t * (1. + RETV * max(q, 0.)))) + END SUBROUTINE clcdrag end module clcdrag_m