--- trunk/Sources/phylmd/clmain.f 2016/09/01 10:30:53 207 +++ trunk/Sources/phylmd/clmain.f 2016/12/07 16:44:53 208 @@ -54,7 +54,7 @@ REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse INTEGER, INTENT(IN):: jour ! jour de l'annee en cours REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temperature du sol (en Kelvin) + REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(IN):: ksta, ksta_ter LOGICAL, INTENT(IN):: ok_kzmin @@ -96,7 +96,7 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ftsol" + REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol REAL, intent(out):: flux_t(klon, nbsrf) ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers @@ -278,7 +278,6 @@ yq = 0. y_dflux_t = 0. y_dflux_q = 0. - ytsoil = 999999. yrugoro = 0. d_ts = 0. yfluxlat = 0. @@ -349,12 +348,7 @@ yqsol = 0. END IF - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO + ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) DO k = 1, klev DO j = 1, knon @@ -370,8 +364,8 @@ END DO ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & - yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, & + yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) IF (iflag_pbl == 1) THEN CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) @@ -446,13 +440,13 @@ ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, & - yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & - yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), & - ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, & - y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) + CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), & + ytsoil(:knon, :), yqsol, rmu0, yrugos, yrugoro, yu1, yv1, & + coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, & + yrads, yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, & + yfluxlat, pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & + y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t, y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. @@ -529,12 +523,7 @@ END IF ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :) DO j = 1, knon i = ni(j) @@ -580,7 +569,6 @@ ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - END DO CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &