--- trunk/Sources/phylmd/clmain.f 2017/10/16 12:35:41 225 +++ trunk/Sources/phylmd/clmain.f 2017/11/13 11:51:04 241 @@ -8,9 +8,9 @@ cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, & qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, & agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, & - flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, & - q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, & - trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, & + u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, & + trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 @@ -21,16 +21,12 @@ ! ne tient pas compte de la diff\'erentiation des sous-fractions ! de sol. - ! Pour pouvoir extraire les coefficients d'\'echanges et le vent - ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh", - ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois - ! champs sur les quatre sous-surfaces du mod\`ele. - use clqh_m, only: clqh use clvent_m, only: clvent use coefkz_m, only: coefkz use coefkzmin_m, only: coefkzmin - USE conf_gcm_m, ONLY: prt_level, lmt_pas + use coefkz2_m, only: coefkz2 + USE conf_gcm_m, ONLY: lmt_pas USE conf_phys_m, ONLY: iflag_pbl USE dimphy, ONLY: klev, klon, zmasq USE dimsoil, ONLY: nsoilmx @@ -41,7 +37,6 @@ USE suphec_m, ONLY: rd, rg, rkappa use time_phylmdz, only: itap use ustarhb_m, only: ustarhb - use vdif_kcay_m, only: vdif_kcay use yamada4_m, only: yamada4 REAL, INTENT(IN):: dtime ! interval du temps (secondes) @@ -101,7 +96,7 @@ ! flux de vapeur d'eau (kg / m2 / s) à la surface REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) - ! tension du vent à la surface, en Pa + ! tension du vent (flux turbulent de vent) à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev + 1, nbsrf) @@ -111,8 +106,11 @@ ! dflux_q derive du flux latent ! IM "slab" ocean - REAL, intent(out):: ycoefh(klon, klev) - REAL, intent(out):: zu1(klon), zv1(klon) + REAL, intent(out):: ycoefh(:, :) ! (klon, klev) + ! Pour pouvoir extraire les coefficients d'\'echange, le champ + ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de + ! ce champ sur les quatre sous-surfaces du mod\`ele. + REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf) @@ -154,10 +152,6 @@ REAL ytsoil(klon, nsoilmx) REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) - - REAL u1lay(klon), v1lay(klon) ! vent dans la premi\`ere couche, pour - ! une sous-surface donnée - REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down @@ -170,30 +164,25 @@ REAL y_flux_t(klon), y_flux_q(klon) REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) - REAL coefh(klon, klev), coefm(klon, klev) + REAL coefh(klon, 2:klev), coefm(klon, 2:klev) + real ycdragh(klon), ycdragm(klon) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev) - - REAL ycoefm0(klon, klev), ycoefh0(klon, klev) - - REAL yzlay(klon, klev), yzlev(klon, klev + 1), yteta(klon, klev) + REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev) + REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev) REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1) - REAL ykmq(klon, klev + 1) REAL yq2(klon, klev + 1) - REAL q2diag(klon, klev + 1) - REAL delp(klon, klev) INTEGER i, k, nsrf - INTEGER ni(klon), knon, j REAL pctsrf_pot(klon, nbsrf) ! "pourcentage potentiel" pour tenir compte des \'eventuelles ! apparitions ou disparitions de la glace de mer - REAL yt2m(klon), yq2m(klon), yu10m(klon) - REAL yustar(klon) + REAL yt2m(klon), yq2m(klon), wind10m(klon) + REAL ustar(klon) REAL yt10m(klon), yq10m(klon) REAL ypblh(klon) @@ -206,17 +195,13 @@ REAL ytrmb1(klon) REAL ytrmb2(klon) REAL ytrmb3(klon) - REAL uzon(klon), vmer(klon) + REAL u1(klon), v1(klon) REAL tair1(klon), qair1(klon), tairsol(klon) REAL psfce(klon), patm(klon) REAL qairsol(klon), zgeo1(klon) REAL rugo1(klon) - ! utiliser un jeu de fonctions simples - LOGICAL zxli - PARAMETER (zxli=.FALSE.) - !------------------------------------------------------------ ytherm = 0. @@ -233,8 +218,6 @@ cdragm = 0. dflux_t = 0. dflux_q = 0. - zu1 = 0. - zv1 = 0. ypct = 0. yqsurf = 0. yrain_f = 0. @@ -304,8 +287,6 @@ yagesno(j) = agesno(i, nsrf) yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) - u1lay(j) = u(i, 1) - v1lay(j) = v(i, 1) yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) ypaprs(j, klev + 1) = paprs(i, klev + 1) y_run_off_lic_0(j) = run_off_lic_0(i) @@ -332,49 +313,59 @@ ! calculer Cdrag et les coefficients d'echange CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), & yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), & - coefh(:knon, :)) + coefh(:knon, :), ycdragm(:knon), ycdragh(:knon)) + IF (iflag_pbl == 1) THEN - CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) + CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), & + ycoefh0(:knon, :)) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + ycdragm(:knon) = max(ycdragm(:knon), 0.) + ycdragh(:knon) = max(ycdragh(:knon), 0.) END IF - ! on met un seuil pour coefm et coefh + ! on met un seuil pour ycdragm et ycdragh IF (nsrf == is_oce) THEN - coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax) - coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax) + ycdragm(:knon) = min(ycdragm(:knon), cdmmax) + ycdragh(:knon) = min(ycdragh(:knon), cdhmax) END IF IF (ok_kzmin) THEN ! Calcul d'une diffusion minimale pour les conditions tres stables CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, & - coefm(:knon, 1), ycoefm0, ycoefh0) + ycdragm(:knon), ycoefh0(:knon, :)) + ycoefm0(:knon, :) = ycoefh0(:knon, :) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) END IF - IF (iflag_pbl >= 3) THEN + IF (iflag_pbl >= 6) THEN ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et ! Fr\'ed\'eric Hourdin yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) & + ypplay(:knon, 1))) & * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg + DO k = 2, klev - yzlay(1:knon, k) = yzlay(1:knon, k-1) & + yzlay(:knon, k) = yzlay(:knon, k-1) & + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) & / ypaprs(1:knon, k) & * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg END DO + DO k = 1, klev yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) & / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k)) END DO - yzlev(1:knon, 1) = 0. - yzlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) & + + zlev(:knon, 1) = 0. + zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) & - yzlay(:knon, klev - 1) + DO k = 2, klev - yzlev(1:knon, k) = 0.5 * (yzlay(1:knon, k) + yzlay(1:knon, k-1)) + zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1)) END DO + DO k = 1, klev + 1 DO j = 1, knon i = ni(j) @@ -382,49 +373,41 @@ END DO END DO - CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar) - IF (prt_level > 9) PRINT *, 'USTAR = ', yustar - - ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange - - IF (iflag_pbl >= 11) THEN - CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, & - yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, & - iflag_pbl) - ELSE - CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, & - coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl) - END IF - - coefm(:knon, 2:) = ykmm(:knon, 2:klev) - coefh(:knon, 2:) = ykmn(:knon, 2:klev) + ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon)) + CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), & + yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), & + ykmm(:knon, :), ykmn(:knon, :), ustar(:knon)) + coefm(:knon, :) = ykmm(:knon, 2:klev) + coefh(:knon, :) = ykmn(:knon, 2:klev) END IF - ! calculer la diffusion des vitesses "u" et "v" - CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), & - coefm(:knon, :), yt, yu, ypaprs, ypplay, ydelp, y_d_u, & + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & + ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & y_flux_u(:knon)) - CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), & - coefm(:knon, :), yt, yv, ypaprs, ypplay, ydelp, y_d_v, & + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & + ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), & y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & - u1lay(:knon), v1lay(:knon), coefh(:knon, :), yt, yq, & - yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), & - snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), & - y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0) + yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), & + yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), & + yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, & + yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & + y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, & + y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. IF (nsrf == is_oce) THEN DO j = 1, knon - yrugm(j) = 0.018 * coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2) & + yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) & / rg + 0.11 * 14E-6 & - / sqrt(coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2)) + / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2)) yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF @@ -433,11 +416,21 @@ y_dflux_q(j) = y_dflux_q(j) * ypct(j) END DO - DO k = 1, klev + DO k = 2, klev DO j = 1, knon i = ni(j) coefh(j, k) = coefh(j, k) * ypct(j) coefm(j, k) = coefm(j, k) * ypct(j) + END DO + END DO + DO j = 1, knon + i = ni(j) + ycdragh(j) = ycdragh(j) * ypct(j) + ycdragm(j) = ycdragm(j) * ypct(j) + END DO + DO k = 1, klev + DO j = 1, knon + i = ni(j) y_d_t(j, k) = y_d_t(j, k) * ypct(j) y_d_q(j, k) = y_d_q(j, k) * ypct(j) y_d_u(j, k) = y_d_u(j, k) * ypct(j) @@ -471,12 +464,10 @@ agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + coefh(j, 1) - cdragm(i) = cdragm(i) + coefm(j, 1) + cdragh(i) = cdragh(i) + ycdragh(j) + cdragm(i) = cdragm(i) + ycdragm(j) dflux_t(i) = dflux_t(i) + y_dflux_t(j) dflux_q(i) = dflux_q(i) + y_dflux_q(j) - zu1(i) = zu1(i) + u1lay(j) * ypct(j) - zv1(i) = zv1(i) + v1lay(j) * ypct(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -497,16 +488,18 @@ d_q(i, k) = d_q(i, k) + y_d_q(j, k) d_u(i, k) = d_u(i, k) + y_d_u(j, k) d_v(i, k) = d_v(i, k) + y_d_v(j, k) - ycoefh(i, k) = ycoefh(i, k) + coefh(j, k) END DO END DO + + ycoefh(ni(:knon), 2:) = ycoefh(ni(:knon), 2:) + coefh(:knon, :) + ycoefh(ni(:knon), 1) = ycoefh(ni(:knon), 1) + ycdragh(:knon) ! diagnostic t, q a 2m et u, v a 10m DO j = 1, knon i = ni(j) - uzon(j) = yu(j, 1) + y_d_u(j, 1) - vmer(j) = yv(j, 1) + y_d_v(j, 1) + u1(j) = yu(j, 1) + y_d_u(j, 1) + v1(j) = yv(j, 1) + y_d_v(j, 1) tair1(j) = yt(j, 1) + y_d_t(j, 1) qair1(j) = yq(j, 1) + y_d_q(j, 1) zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, & @@ -522,22 +515,22 @@ qairsol(j) = yqsurf(j) END DO - CALL stdlevvar(klon, knon, nsrf, zxli, uzon(:knon), vmer(:knon), & - tair1, qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, & - yt2m, yq2m, yt10m, yq10m, yu10m, yustar) + CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), & + qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, & + yq2m, yt10m, yq10m, wind10m(:knon), ustar) DO j = 1, knon i = ni(j) t2m(i, nsrf) = yt2m(j) q2m(i, nsrf) = yq2m(j) - u10m_srf(i, nsrf) = (yu10m(j) * uzon(j)) & - / sqrt(uzon(j)**2 + vmer(j)**2) - v10m_srf(i, nsrf) = (yu10m(j) * vmer(j)) & - / sqrt(uzon(j)**2 + vmer(j)**2) + u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) & + / sqrt(u1(j)**2 + v1(j)**2) + v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) & + / sqrt(u1(j)**2 + v1(j)**2) END DO - CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & + CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), & y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)