--- trunk/Sources/phylmd/clqh.f 2015/11/25 20:14:19 174 +++ trunk/Sources/phylmd/clqh.f 2017/04/20 14:44:47 221 @@ -4,41 +4,32 @@ contains - SUBROUTINE clqh(dtime, itime, jour, debut, rlat, knon, nisurf, knindex, & - pctsrf, tsoil, qsol, rmu0, co2_ppm, rugos, rugoro, u1lay, v1lay, coef, & - t, q, ts, paprs, pplay, delp, radsol, albedo, snow, qsurf, & - precip_rain, precip_snow, fder, swnet, fluxlat, pctsrf_new, agesno, & - d_t, d_q, d_ts, z0_new, flux_t, flux_q, dflux_s, dflux_l, fqcalving, & - ffonte, run_off_lic_0, flux_o, flux_g) + SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, & + rugos, rugoro, u1lay, v1lay, coef, t, q, ts, paprs, pplay, delp, & + radsol, albedo, snow, qsurf, precip_rain, precip_snow, fder, fluxlat, & + pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, & + dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0) ! Author: Z. X. Li (LMD/CNRS) ! Date: 1993/08/18 ! Objet : diffusion verticale de "q" et de "h" USE conf_phys_m, ONLY: iflag_pbl - USE dimens_m, ONLY: iim, jjm USE dimphy, ONLY: klev, klon - USE dimsoil, ONLY: nsoilmx - USE indicesol, ONLY: is_ter, nbsrf USE interfsurf_hq_m, ONLY: interfsurf_hq USE suphec_m, ONLY: rcpd, rd, rg, rkappa REAL, intent(in):: dtime ! intervalle du temps (s) - integer, intent(in):: itime - integer, intent(in):: jour ! jour de l'annee en cours + integer, intent(in):: julien ! jour de l'annee en cours logical, intent(in):: debut - real, intent(in):: rlat(klon) - INTEGER, intent(in):: knon - integer nisurf + integer, intent(in):: nisurf integer, intent(in):: knindex(:) ! (knon) - real, intent(in):: pctsrf(klon, nbsrf) - REAL tsoil(klon, nsoilmx) + REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) REAL, intent(inout):: qsol(klon) ! column-density of water in soil, in kg m-2 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, intent(in):: co2_ppm ! taux CO2 atmosphere real rugos(klon) ! rugosite REAL rugoro(klon) REAL u1lay(klon) ! vitesse u de la 1ere couche (m / s) @@ -51,13 +42,13 @@ REAL t(klon, klev) ! temperature (K) REAL q(klon, klev) ! humidite specifique (kg / kg) - REAL, intent(in):: ts(klon) ! temperature du sol (K) - REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) + REAL, intent(in):: ts(:) ! (knon) temperature du sol (K) + REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa) REAL pplay(klon, klev) ! pression au milieu de couche (Pa) REAL delp(klon, klev) ! epaisseur de couche en pression (Pa) - REAL radsol(klon) ! ray. net au sol (Solaire+IR) W / m2 + REAL radsol(klon) ! ray. net au sol (Solaire + IR) W / m2 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface - REAL snow(klon) ! hauteur de neige + REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige REAL qsurf(klon) ! humidite de l'air au dessus de la surface real, intent(in):: precip_rain(klon) @@ -67,18 +58,21 @@ ! solid water mass flux (kg / m2 / s), positive down real, intent(inout):: fder(klon) - real swnet(klon) - real fluxlat(klon) - real pctsrf_new(klon, nbsrf) - REAL, intent(inout):: agesno(klon) + real, intent(out):: fluxlat(:) ! (knon) + real, intent(in):: pctsrf_new_sic(:) ! (klon) + REAL, intent(inout):: agesno(:) ! (knon) REAL d_t(klon, klev) ! incrementation de "t" REAL d_q(klon, klev) ! incrementation de "q" - REAL, intent(out):: d_ts(:) ! (knon) incrementation de "ts" + REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature real z0_new(klon) - REAL flux_t(klon, klev) ! (diagnostic) flux de la chaleur - ! sensible, flux de Cp*T, positif vers - ! le bas: j / (m**2 s) c.a.d.: W / m2 - REAL flux_q(klon, klev) ! flux de la vapeur d'eau:kg / (m**2 s) + + REAL, intent(out):: flux_t(:) ! (knon) + ! (diagnostic) flux de chaleur sensible (Cp T) à la surface, + ! positif vers le bas, W / m2 + + REAL, intent(out):: flux_q(:) ! (knon) + ! flux de la vapeur d'eau à la surface, en kg / (m**2 s) + REAL dflux_s(klon) ! derivee du flux sensible dF / dTs REAL dflux_l(klon) ! derivee du flux latent dF / dTs @@ -91,16 +85,10 @@ REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent - !IM "slab" ocean - - REAL, intent(out):: flux_o(klon) ! flux entre l'ocean et l'atmosphere W / m2 - - REAL, intent(out):: flux_g(klon) - ! flux entre l'ocean et la glace de mer W / m2 - ! Local: - REAL evap(klon) ! evaporation au sol + INTEGER knon + REAL evap(size(knindex)) ! (knon) evaporation au sol INTEGER i, k REAL zx_cq(klon, klev) @@ -112,7 +100,6 @@ REAL zx_coef(klon, klev) REAL local_h(klon, klev) ! enthalpie potentielle REAL local_q(klon, klev) - REAL local_ts(klon) REAL psref(klon) ! pression de reference pour temperature potent. REAL zx_pkh(klon, klev), zx_pkf(klon, klev) @@ -123,20 +110,18 @@ REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev) REAL zdelz - real zlev1(klon) real temp_air(klon), spechum(klon) - real epot_air(klon), ccanopy(klon) real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon) real petBcoef(klon), peqBcoef(klon) - real swdown(klon) real p1lay(klon) - real fluxsens(klon) - real tsurf_new(knon) + real tsurf_new(size(knindex)) ! (knon) real zzpk !---------------------------------------------------------------- + knon = size(knindex) + if (iflag_pbl == 1) then do k = 3, klev do i = 1, knon @@ -159,7 +144,6 @@ DO i = 1, knon psref(i) = paprs(i, 1) !pression de reference est celle au sol - local_ts(i) = ts(i) ENDDO DO k = 1, klev DO i = 1, knon @@ -174,9 +158,9 @@ DO k = 2, klev DO i = 1, knon - zx_coef(i, k) = coef(i, k)*RG / (pplay(i, k - 1) - pplay(i, k)) & - *(paprs(i, k)*2 / (t(i, k)+t(i, k - 1)) / RD)**2 - zx_coef(i, k) = zx_coef(i, k) * dtime*RG + zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) & + * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2 + zx_coef(i, k) = zx_coef(i, k) * dtime * RG ENDDO ENDDO @@ -184,63 +168,62 @@ DO k = 2, klev DO i = 1, knon - zdelz = RD * (t(i, k - 1)+t(i, k)) / 2.0 / RG / paprs(i, k) & - *(pplay(i, k - 1) - pplay(i, k)) + zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) & + * (pplay(i, k - 1) - pplay(i, k)) z_gamaq(i, k) = gamq(i, k) * zdelz - z_gamah(i, k) = gamt(i, k) * zdelz *RCPD * zx_pkh(i, k) + z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k) ENDDO ENDDO DO i = 1, knon zx_buf1(i) = zx_coef(i, klev) + delp(i, klev) - zx_cq(i, klev) = (local_q(i, klev)*delp(i, klev) & - - zx_coef(i, klev)*z_gamaq(i, klev)) / zx_buf1(i) + zx_cq(i, klev) = (local_q(i, klev) * delp(i, klev) & + - zx_coef(i, klev) * z_gamaq(i, klev)) / zx_buf1(i) zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i) zzpk=(pplay(i, klev) / psref(i))**RKAPPA - zx_buf2(i) = zzpk*delp(i, klev) + zx_coef(i, klev) - zx_ch(i, klev) = (local_h(i, klev)*zzpk*delp(i, klev) & - - zx_coef(i, klev)*z_gamah(i, klev)) / zx_buf2(i) + zx_buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev) + zx_ch(i, klev) = (local_h(i, klev) * zzpk * delp(i, klev) & + - zx_coef(i, klev) * z_gamah(i, klev)) / zx_buf2(i) zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i) ENDDO DO k = klev - 1, 2, - 1 DO i = 1, knon - zx_buf1(i) = delp(i, k)+zx_coef(i, k) & - +zx_coef(i, k+1)*(1. - zx_dq(i, k+1)) - zx_cq(i, k) = (local_q(i, k)*delp(i, k) & - +zx_coef(i, k+1)*zx_cq(i, k+1) & - +zx_coef(i, k+1)*z_gamaq(i, k+1) & - - zx_coef(i, k)*z_gamaq(i, k)) / zx_buf1(i) + zx_buf1(i) = delp(i, k) + zx_coef(i, k) & + + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1)) + zx_cq(i, k) = (local_q(i, k) * delp(i, k) & + + zx_coef(i, k + 1) * zx_cq(i, k + 1) & + + zx_coef(i, k + 1) * z_gamaq(i, k + 1) & + - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i) zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i) zzpk=(pplay(i, k) / psref(i))**RKAPPA - zx_buf2(i) = zzpk*delp(i, k)+zx_coef(i, k) & - +zx_coef(i, k+1)*(1. - zx_dh(i, k+1)) - zx_ch(i, k) = (local_h(i, k)*zzpk*delp(i, k) & - +zx_coef(i, k+1)*zx_ch(i, k+1) & - +zx_coef(i, k+1)*z_gamah(i, k+1) & - - zx_coef(i, k)*z_gamah(i, k)) / zx_buf2(i) + zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) & + + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1)) + zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) & + + zx_coef(i, k + 1) * zx_ch(i, k + 1) & + + zx_coef(i, k + 1) * z_gamah(i, k + 1) & + - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i) zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i) ENDDO ENDDO DO i = 1, knon - zx_buf1(i) = delp(i, 1) + zx_coef(i, 2)*(1. - zx_dq(i, 2)) - zx_cq(i, 1) = (local_q(i, 1)*delp(i, 1) & - +zx_coef(i, 2)*(z_gamaq(i, 2)+zx_cq(i, 2))) & - / zx_buf1(i) + zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2)) + zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) & + + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i) zx_dq(i, 1) = - 1. * RG / zx_buf1(i) zzpk=(pplay(i, 1) / psref(i))**RKAPPA - zx_buf2(i) = zzpk*delp(i, 1) + zx_coef(i, 2)*(1. - zx_dh(i, 2)) - zx_ch(i, 1) = (local_h(i, 1)*zzpk*delp(i, 1) & - +zx_coef(i, 2)*(z_gamah(i, 2)+zx_ch(i, 2))) & - / zx_buf2(i) + zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2)) + zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) & + + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i) zx_dh(i, 1) = - 1. * RG / zx_buf2(i) ENDDO - ! Appel a interfsurf (appel generique) routine d'interface avec la surface + ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface + ! avec la surface - ! initialisation + ! Initialisation petAcoef =0. peqAcoef = 0. petBcoef =0. @@ -253,55 +236,31 @@ peqBcoef(1:knon) = zx_dq(1:knon, 1) tq_cdrag(1:knon) =coef(:knon, 1) temp_air(1:knon) =t(1:knon, 1) - epot_air(1:knon) =local_h(1:knon, 1) spechum(1:knon)=q(1:knon, 1) p1lay(1:knon) = pplay(1:knon, 1) - zlev1(1:knon) = delp(1:knon, 1) - if(nisurf == is_ter) THEN - swdown(:knon) = swnet(:knon) / (1 - albedo) - else - swdown(:knon) = swnet(:knon) - endif - ccanopy = co2_ppm + CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knon, knindex, debut, & + tsoil, qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag, petAcoef, & + peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, fder, rugos, & + rugoro, snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, & + fluxlat, dflux_l, dflux_s, tsurf_new, albedo, z0_new, & + pctsrf_new_sic, agesno, fqcalving, ffonte, run_off_lic_0) - CALL interfsurf_hq(itime, dtime, jour, rmu0, nisurf, knon, knindex, & - pctsrf, rlat, debut, nsoilmx, tsoil, qsol, u1lay, v1lay, temp_air, & - spechum, tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & - precip_rain, precip_snow, fder, rugos, rugoro, snow, qsurf, & - ts(:knon), p1lay, psref, radsol, evap, fluxsens, fluxlat, dflux_l, & - dflux_s, tsurf_new, albedo, z0_new, pctsrf_new, agesno, fqcalving, & - ffonte, run_off_lic_0, flux_o, flux_g) - - flux_t(:knon, 1) = fluxsens(:knon) - flux_q(:knon, 1) = - evap(:knon) - d_ts = tsurf_new - ts(:knon) + flux_q = - evap + d_ts = tsurf_new - ts - !==== une fois on a zx_h_ts, on peut faire l'iteration ======== DO i = 1, knon - local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1)*flux_t(i, 1)*dtime - local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1)*flux_q(i, 1)*dtime - ENDDO - DO k = 2, klev - DO i = 1, knon - local_q(i, k) = zx_cq(i, k) + zx_dq(i, k)*local_q(i, k - 1) - local_h(i, k) = zx_ch(i, k) + zx_dh(i, k)*local_h(i, k - 1) - ENDDO + local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime + local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime ENDDO - - !== flux_q est le flux de vapeur d'eau: kg / (m**2 s) positive vers bas - !== flux_t est le flux de cpt (energie sensible): j / (m**2 s) DO k = 2, klev DO i = 1, knon - flux_q(i, k) = (zx_coef(i, k) / RG / dtime) & - * (local_q(i, k) - local_q(i, k - 1)+z_gamaq(i, k)) - flux_t(i, k) = (zx_coef(i, k) / RG / dtime) & - * (local_h(i, k) - local_h(i, k - 1)+z_gamah(i, k)) & - / zx_pkh(i, k) + local_q(i, k) = zx_cq(i, k) + zx_dq(i, k) * local_q(i, k - 1) + local_h(i, k) = zx_ch(i, k) + zx_dh(i, k) * local_h(i, k - 1) ENDDO ENDDO - ! Calcul tendances + ! Calcul des tendances DO k = 1, klev DO i = 1, knon d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k)