/[lmdze]/trunk/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 208 - (show annotations)
Wed Dec 7 16:44:53 2016 UTC (7 years, 4 months ago) by guez
Original Path: trunk/Sources/phylmd/clqh.f
File size: 9569 byte(s)
Module academic was not used.

Useful values for iflag_phys were only 0 and 1 so changed type to logical.

Definition of fmagic was duplicated in procedures alboc and alboc_cd
so moved it up to interfsurf_hq and also moved multiplication by
fmagic (following LMDZ).

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, jour, debut, rlat, nisurf, knindex, tsoil, qsol, &
8 rmu0, rugos, rugoro, u1lay, v1lay, coef, t, q, ts, paprs, pplay, delp, &
9 radsol, albedo, snow, qsurf, precip_rain, precip_snow, fder, fluxlat, &
10 pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, &
11 dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0)
12
13 ! Author: Z. X. Li (LMD/CNRS)
14 ! Date: 1993/08/18
15 ! Objet : diffusion verticale de "q" et de "h"
16
17 USE conf_phys_m, ONLY: iflag_pbl
18 USE dimphy, ONLY: klev, klon
19 USE interfsurf_hq_m, ONLY: interfsurf_hq
20 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
21
22 REAL, intent(in):: dtime ! intervalle du temps (s)
23 integer, intent(in):: jour ! jour de l'annee en cours
24 logical, intent(in):: debut
25 real, intent(in):: rlat(klon)
26 integer, intent(in):: nisurf
27 integer, intent(in):: knindex(:) ! (knon)
28 REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx)
29
30 REAL, intent(inout):: qsol(klon)
31 ! column-density of water in soil, in kg m-2
32
33 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
34 real rugos(klon) ! rugosite
35 REAL rugoro(klon)
36 REAL u1lay(klon) ! vitesse u de la 1ere couche (m / s)
37 REAL v1lay(klon) ! vitesse v de la 1ere couche (m / s)
38
39 REAL, intent(in):: coef(:, :) ! (knon, klev)
40 ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement
41 ! du vent (dV / dz). La premiere valeur indique la valeur de Cdrag
42 ! (sans unite).
43
44 REAL t(klon, klev) ! temperature (K)
45 REAL q(klon, klev) ! humidite specifique (kg / kg)
46 REAL, intent(in):: ts(:) ! (knon) temperature du sol (K)
47 REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa)
48 REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
49 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
50 REAL radsol(klon) ! ray. net au sol (Solaire + IR) W / m2
51 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface
52 REAL, intent(inout):: snow(klon) ! hauteur de neige
53 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
54
55 real, intent(in):: precip_rain(klon)
56 ! liquid water mass flux (kg / m2 / s), positive down
57
58 real, intent(in):: precip_snow(klon)
59 ! solid water mass flux (kg / m2 / s), positive down
60
61 real, intent(inout):: fder(klon)
62 real fluxlat(klon)
63 real, intent(in):: pctsrf_new_sic(:) ! (klon)
64 REAL, intent(inout):: agesno(:) ! (knon)
65 REAL d_t(klon, klev) ! incrementation de "t"
66 REAL d_q(klon, klev) ! incrementation de "q"
67 REAL, intent(out):: d_ts(:) ! (knon) incr\'ementation de "ts"
68 real z0_new(klon)
69
70 REAL, intent(out):: flux_t(:) ! (knon)
71 ! (diagnostic) flux de chaleur sensible (Cp T) à la surface,
72 ! positif vers le bas, W / m2
73
74 REAL, intent(out):: flux_q(:) ! (knon)
75 ! flux de la vapeur d'eau à la surface, en kg / (m**2 s)
76
77 REAL dflux_s(klon) ! derivee du flux sensible dF / dTs
78 REAL dflux_l(klon) ! derivee du flux latent dF / dTs
79
80 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
81 ! hauteur de neige, en kg / m2 / s
82 REAL fqcalving(klon)
83
84 ! Flux thermique utiliser pour fondre la neige
85 REAL ffonte(klon)
86
87 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
88
89 ! Local:
90
91 INTEGER knon
92 REAL evap(size(knindex)) ! (knon) evaporation au sol
93
94 INTEGER i, k
95 REAL zx_cq(klon, klev)
96 REAL zx_dq(klon, klev)
97 REAL zx_ch(klon, klev)
98 REAL zx_dh(klon, klev)
99 REAL zx_buf1(klon)
100 REAL zx_buf2(klon)
101 REAL zx_coef(klon, klev)
102 REAL local_h(klon, klev) ! enthalpie potentielle
103 REAL local_q(klon, klev)
104 REAL psref(klon) ! pression de reference pour temperature potent.
105 REAL zx_pkh(klon, klev), zx_pkf(klon, klev)
106
107 ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre
108 REAL gamq(klon, 2:klev)
109 ! contre-gradient pour la chaleur sensible: Kelvin / metre
110 REAL gamt(klon, 2:klev)
111 REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev)
112 REAL zdelz
113
114 real temp_air(klon), spechum(klon)
115 real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon)
116 real petBcoef(klon), peqBcoef(klon)
117 real p1lay(klon)
118
119 real tsurf_new(size(knindex)) ! (knon)
120 real zzpk
121
122 !----------------------------------------------------------------
123
124 knon = size(knindex)
125
126 if (iflag_pbl == 1) then
127 do k = 3, klev
128 do i = 1, knon
129 gamq(i, k)= 0.0
130 gamt(i, k)= - 1.0e-03
131 enddo
132 enddo
133 do i = 1, knon
134 gamq(i, 2) = 0.0
135 gamt(i, 2) = - 2.5e-03
136 enddo
137 else
138 do k = 2, klev
139 do i = 1, knon
140 gamq(i, k) = 0.0
141 gamt(i, k) = 0.0
142 enddo
143 enddo
144 endif
145
146 DO i = 1, knon
147 psref(i) = paprs(i, 1) !pression de reference est celle au sol
148 ENDDO
149 DO k = 1, klev
150 DO i = 1, knon
151 zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA
152 zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA
153 local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k)
154 local_q(i, k) = q(i, k)
155 ENDDO
156 ENDDO
157
158 ! Convertir les coefficients en variables convenables au calcul:
159
160 DO k = 2, klev
161 DO i = 1, knon
162 zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) &
163 * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2
164 zx_coef(i, k) = zx_coef(i, k) * dtime * RG
165 ENDDO
166 ENDDO
167
168 ! Preparer les flux lies aux contre-gardients
169
170 DO k = 2, klev
171 DO i = 1, knon
172 zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) &
173 * (pplay(i, k - 1) - pplay(i, k))
174 z_gamaq(i, k) = gamq(i, k) * zdelz
175 z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k)
176 ENDDO
177 ENDDO
178 DO i = 1, knon
179 zx_buf1(i) = zx_coef(i, klev) + delp(i, klev)
180 zx_cq(i, klev) = (local_q(i, klev) * delp(i, klev) &
181 - zx_coef(i, klev) * z_gamaq(i, klev)) / zx_buf1(i)
182 zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i)
183
184 zzpk=(pplay(i, klev) / psref(i))**RKAPPA
185 zx_buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev)
186 zx_ch(i, klev) = (local_h(i, klev) * zzpk * delp(i, klev) &
187 - zx_coef(i, klev) * z_gamah(i, klev)) / zx_buf2(i)
188 zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i)
189 ENDDO
190 DO k = klev - 1, 2, - 1
191 DO i = 1, knon
192 zx_buf1(i) = delp(i, k) + zx_coef(i, k) &
193 + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1))
194 zx_cq(i, k) = (local_q(i, k) * delp(i, k) &
195 + zx_coef(i, k + 1) * zx_cq(i, k + 1) &
196 + zx_coef(i, k + 1) * z_gamaq(i, k + 1) &
197 - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i)
198 zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i)
199
200 zzpk=(pplay(i, k) / psref(i))**RKAPPA
201 zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) &
202 + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1))
203 zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) &
204 + zx_coef(i, k + 1) * zx_ch(i, k + 1) &
205 + zx_coef(i, k + 1) * z_gamah(i, k + 1) &
206 - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i)
207 zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i)
208 ENDDO
209 ENDDO
210
211 DO i = 1, knon
212 zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2))
213 zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) &
214 + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i)
215 zx_dq(i, 1) = - 1. * RG / zx_buf1(i)
216
217 zzpk=(pplay(i, 1) / psref(i))**RKAPPA
218 zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2))
219 zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) &
220 + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i)
221 zx_dh(i, 1) = - 1. * RG / zx_buf2(i)
222 ENDDO
223
224 ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface
225 ! avec la surface
226
227 ! Initialisation
228 petAcoef =0.
229 peqAcoef = 0.
230 petBcoef =0.
231 peqBcoef = 0.
232 p1lay =0.
233
234 petAcoef(1:knon) = zx_ch(1:knon, 1)
235 peqAcoef(1:knon) = zx_cq(1:knon, 1)
236 petBcoef(1:knon) = zx_dh(1:knon, 1)
237 peqBcoef(1:knon) = zx_dq(1:knon, 1)
238 tq_cdrag(1:knon) =coef(:knon, 1)
239 temp_air(1:knon) =t(1:knon, 1)
240 spechum(1:knon)=q(1:knon, 1)
241 p1lay(1:knon) = pplay(1:knon, 1)
242
243 CALL interfsurf_hq(dtime, jour, rmu0, nisurf, knon, knindex, rlat, debut, &
244 tsoil, qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag, petAcoef, &
245 peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, fder, rugos, &
246 rugoro, snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, &
247 fluxlat, dflux_l, dflux_s, tsurf_new, albedo, z0_new, &
248 pctsrf_new_sic, agesno, fqcalving, ffonte, run_off_lic_0)
249
250 flux_q = - evap
251 d_ts = tsurf_new - ts
252
253 ! Une fois qu'on a zx_h_ts, on peut faire l'it\'eration
254 DO i = 1, knon
255 local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime
256 local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime
257 ENDDO
258 DO k = 2, klev
259 DO i = 1, knon
260 local_q(i, k) = zx_cq(i, k) + zx_dq(i, k) * local_q(i, k - 1)
261 local_h(i, k) = zx_ch(i, k) + zx_dh(i, k) * local_h(i, k - 1)
262 ENDDO
263 ENDDO
264
265 ! Calcul des tendances
266 DO k = 1, klev
267 DO i = 1, knon
268 d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k)
269 d_q(i, k) = local_q(i, k) - q(i, k)
270 ENDDO
271 ENDDO
272
273 END SUBROUTINE clqh
274
275 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21