/[lmdze]/trunk/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 223 - (show annotations)
Fri Apr 28 13:22:36 2017 UTC (7 years ago) by guez
Original Path: trunk/Sources/phylmd/clqh.f
File size: 9493 byte(s)
In clmain, local variable yfder was computed but not used. I think it
was useful for coupling only. Variable fder_print of pbl_surface in
LMDZ, which is output by LMDZ, corresponds to variable fder of physiq
in LMDZ and LMDZE.

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, &
8 rugos, rugoro, u1lay, v1lay, coef, t, q, ts, paprs, pplay, delp, &
9 radsol, albedo, snow, qsurf, precip_rain, precip_snow, fluxlat, &
10 pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, &
11 dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0)
12
13 ! Author: Z. X. Li (LMD/CNRS)
14 ! Date: 1993/08/18
15 ! Objet : diffusion verticale de "q" et de "h"
16
17 USE conf_phys_m, ONLY: iflag_pbl
18 USE dimphy, ONLY: klev, klon
19 USE interfsurf_hq_m, ONLY: interfsurf_hq
20 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
21
22 REAL, intent(in):: dtime ! intervalle du temps (s)
23 integer, intent(in):: julien ! jour de l'annee en cours
24 logical, intent(in):: debut
25 integer, intent(in):: nisurf
26 integer, intent(in):: knindex(:) ! (knon)
27 REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx)
28
29 REAL, intent(inout):: qsol(klon)
30 ! column-density of water in soil, in kg m-2
31
32 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
33 real rugos(klon) ! rugosite
34 REAL rugoro(klon)
35 REAL u1lay(klon) ! vitesse u de la 1ere couche (m / s)
36 REAL v1lay(klon) ! vitesse v de la 1ere couche (m / s)
37
38 REAL, intent(in):: coef(:, :) ! (knon, klev)
39 ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement
40 ! du vent (dV / dz). La premiere valeur indique la valeur de Cdrag
41 ! (sans unite).
42
43 REAL t(klon, klev) ! temperature (K)
44 REAL q(klon, klev) ! humidite specifique (kg / kg)
45 REAL, intent(in):: ts(:) ! (knon) temperature du sol (K)
46 REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa)
47 REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
48 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
49
50 REAL, intent(inout):: radsol(:) ! (knon)
51 ! rayonnement net au sol (Solaire + IR) W / m2
52
53 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface
54 REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige
55 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
56
57 real, intent(in):: precip_rain(klon)
58 ! liquid water mass flux (kg / m2 / s), positive down
59
60 real, intent(in):: precip_snow(klon)
61 ! solid water mass flux (kg / m2 / s), positive down
62
63 real, intent(out):: fluxlat(:) ! (knon)
64 real, intent(in):: pctsrf_new_sic(:) ! (klon)
65 REAL, intent(inout):: agesno(:) ! (knon)
66 REAL d_t(klon, klev) ! incrementation de "t"
67 REAL d_q(klon, klev) ! incrementation de "q"
68 REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature
69 real z0_new(klon)
70
71 REAL, intent(out):: flux_t(:) ! (knon)
72 ! (diagnostic) flux de chaleur sensible (Cp T) à la surface,
73 ! positif vers le bas, W / m2
74
75 REAL, intent(out):: flux_q(:) ! (knon)
76 ! flux de la vapeur d'eau à la surface, en kg / (m**2 s)
77
78 REAL dflux_s(:) ! (knon) derivee du flux sensible dF / dTs
79 REAL dflux_l(:) ! (knon) derivee du flux latent dF / dTs
80
81 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
82 ! hauteur de neige, en kg / m2 / s
83 REAL fqcalving(klon)
84
85 ! Flux thermique utiliser pour fondre la neige
86 REAL ffonte(klon)
87
88 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
89
90 ! Local:
91
92 INTEGER knon
93 REAL evap(size(knindex)) ! (knon) evaporation au sol
94
95 INTEGER i, k
96 REAL zx_cq(klon, klev)
97 REAL zx_dq(klon, klev)
98 REAL zx_ch(klon, klev)
99 REAL zx_dh(klon, klev)
100 REAL zx_buf1(klon)
101 REAL zx_buf2(klon)
102 REAL zx_coef(klon, klev)
103 REAL local_h(klon, klev) ! enthalpie potentielle
104 REAL local_q(klon, klev)
105 REAL psref(klon) ! pression de reference pour temperature potent.
106 REAL zx_pkh(klon, klev), zx_pkf(klon, klev)
107
108 ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre
109 REAL gamq(klon, 2:klev)
110 ! contre-gradient pour la chaleur sensible: Kelvin / metre
111 REAL gamt(klon, 2:klev)
112 REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev)
113 REAL zdelz
114
115 real temp_air(klon), spechum(klon)
116 real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon)
117 real petBcoef(klon), peqBcoef(klon)
118 real p1lay(klon)
119
120 real tsurf_new(size(knindex)) ! (knon)
121 real zzpk
122
123 !----------------------------------------------------------------
124
125 knon = size(knindex)
126
127 if (iflag_pbl == 1) then
128 do k = 3, klev
129 do i = 1, knon
130 gamq(i, k)= 0.0
131 gamt(i, k)= - 1.0e-03
132 enddo
133 enddo
134 do i = 1, knon
135 gamq(i, 2) = 0.0
136 gamt(i, 2) = - 2.5e-03
137 enddo
138 else
139 do k = 2, klev
140 do i = 1, knon
141 gamq(i, k) = 0.0
142 gamt(i, k) = 0.0
143 enddo
144 enddo
145 endif
146
147 DO i = 1, knon
148 psref(i) = paprs(i, 1) !pression de reference est celle au sol
149 ENDDO
150 DO k = 1, klev
151 DO i = 1, knon
152 zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA
153 zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA
154 local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k)
155 local_q(i, k) = q(i, k)
156 ENDDO
157 ENDDO
158
159 ! Convertir les coefficients en variables convenables au calcul:
160
161 DO k = 2, klev
162 DO i = 1, knon
163 zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) &
164 * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2
165 zx_coef(i, k) = zx_coef(i, k) * dtime * RG
166 ENDDO
167 ENDDO
168
169 ! Preparer les flux lies aux contre-gardients
170
171 DO k = 2, klev
172 DO i = 1, knon
173 zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) &
174 * (pplay(i, k - 1) - pplay(i, k))
175 z_gamaq(i, k) = gamq(i, k) * zdelz
176 z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k)
177 ENDDO
178 ENDDO
179 DO i = 1, knon
180 zx_buf1(i) = zx_coef(i, klev) + delp(i, klev)
181 zx_cq(i, klev) = (local_q(i, klev) * delp(i, klev) &
182 - zx_coef(i, klev) * z_gamaq(i, klev)) / zx_buf1(i)
183 zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i)
184
185 zzpk=(pplay(i, klev) / psref(i))**RKAPPA
186 zx_buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev)
187 zx_ch(i, klev) = (local_h(i, klev) * zzpk * delp(i, klev) &
188 - zx_coef(i, klev) * z_gamah(i, klev)) / zx_buf2(i)
189 zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i)
190 ENDDO
191 DO k = klev - 1, 2, - 1
192 DO i = 1, knon
193 zx_buf1(i) = delp(i, k) + zx_coef(i, k) &
194 + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1))
195 zx_cq(i, k) = (local_q(i, k) * delp(i, k) &
196 + zx_coef(i, k + 1) * zx_cq(i, k + 1) &
197 + zx_coef(i, k + 1) * z_gamaq(i, k + 1) &
198 - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i)
199 zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i)
200
201 zzpk=(pplay(i, k) / psref(i))**RKAPPA
202 zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) &
203 + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1))
204 zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) &
205 + zx_coef(i, k + 1) * zx_ch(i, k + 1) &
206 + zx_coef(i, k + 1) * z_gamah(i, k + 1) &
207 - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i)
208 zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i)
209 ENDDO
210 ENDDO
211
212 DO i = 1, knon
213 zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2))
214 zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) &
215 + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i)
216 zx_dq(i, 1) = - 1. * RG / zx_buf1(i)
217
218 zzpk=(pplay(i, 1) / psref(i))**RKAPPA
219 zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2))
220 zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) &
221 + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i)
222 zx_dh(i, 1) = - 1. * RG / zx_buf2(i)
223 ENDDO
224
225 ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface
226 ! avec la surface
227
228 ! Initialisation
229 petAcoef =0.
230 peqAcoef = 0.
231 petBcoef =0.
232 peqBcoef = 0.
233 p1lay =0.
234
235 petAcoef(1:knon) = zx_ch(1:knon, 1)
236 peqAcoef(1:knon) = zx_cq(1:knon, 1)
237 petBcoef(1:knon) = zx_dh(1:knon, 1)
238 peqBcoef(1:knon) = zx_dq(1:knon, 1)
239 tq_cdrag(1:knon) =coef(:knon, 1)
240 temp_air(1:knon) =t(1:knon, 1)
241 spechum(1:knon)=q(1:knon, 1)
242 p1lay(1:knon) = pplay(1:knon, 1)
243
244 CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, &
245 qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag, petAcoef, peqAcoef, &
246 petBcoef, peqBcoef, precip_rain, precip_snow, rugos, rugoro, snow, &
247 qsurf, ts, p1lay, psref, radsol, evap, flux_t, fluxlat, dflux_l, &
248 dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, &
249 fqcalving, ffonte, run_off_lic_0)
250
251 flux_q = - evap
252 d_ts = tsurf_new - ts
253
254 DO i = 1, knon
255 local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime
256 local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime
257 ENDDO
258 DO k = 2, klev
259 DO i = 1, knon
260 local_q(i, k) = zx_cq(i, k) + zx_dq(i, k) * local_q(i, k - 1)
261 local_h(i, k) = zx_ch(i, k) + zx_dh(i, k) * local_h(i, k - 1)
262 ENDDO
263 ENDDO
264
265 ! Calcul des tendances
266 DO k = 1, klev
267 DO i = 1, knon
268 d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k)
269 d_q(i, k) = local_q(i, k) - q(i, k)
270 ENDDO
271 ENDDO
272
273 END SUBROUTINE clqh
274
275 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21