/[lmdze]/trunk/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 266 - (show annotations)
Thu Apr 19 17:54:55 2018 UTC (6 years ago) by guez
File size: 9429 byte(s)
Define macros of the preprocessor CPP_IIM, CPP_JJM, CPP_LLM so we can
control the resolution from the compilation command, and automate
compilation for several resolutions.

In module yoethf_m, transform variables into named constants. So we do
not need procedure yoethf any longer.

Bug fix in program test_inter_barxy, missing calls to fyhyp and fxhyp,
and definition of rlatu.

Remove variable iecri of module conf_gcm_m. The files dyn_hist*.nc are
written every time step. We are simplifying the output system, pending
replacement by a whole new system.

Modify possible value of vert_sampling from "param" to
"strato_custom", following LMDZ. Default values of corresponding
namelist variables are now the values used for LMDZ CMIP6.

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, &
8 rugos, rugoro, u1lay, v1lay, coef, tq_cdrag, t, q, ts, paprs, pplay, &
9 delp, radsol, albedo, snow, qsurf, precip_rain, precip_snow, fluxlat, &
10 pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, &
11 dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0)
12
13 ! Author: Z. X. Li (LMD/CNRS)
14 ! Date: 1993/08/18
15 ! Objet : diffusion verticale de "q" et de "h"
16
17 USE conf_phys_m, ONLY: iflag_pbl
18 USE dimphy, ONLY: klev, klon
19 USE interfsurf_hq_m, ONLY: interfsurf_hq
20 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
21
22 REAL, intent(in):: dtime ! intervalle du temps (s)
23 integer, intent(in):: julien ! jour de l'annee en cours
24 logical, intent(in):: debut
25 integer, intent(in):: nisurf
26 integer, intent(in):: knindex(:) ! (knon)
27 REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx)
28
29 REAL, intent(inout):: qsol(:) ! (knon)
30 ! column-density of water in soil, in kg m-2
31
32 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
33 real rugos(klon) ! rugosite
34 REAL rugoro(klon)
35
36 REAL, intent(in):: u1lay(:), v1lay(:) ! (knon)
37 ! vitesse de la 1ere couche (m / s)
38
39 REAL, intent(in):: coef(:, 2:) ! (knon, 2:klev)
40 ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement
41 ! du vent (dV / dz)
42
43 REAL, intent(in):: tq_cdrag(:) ! (knon) sans unite
44
45 REAL t(klon, klev) ! temperature (K)
46 REAL q(klon, klev) ! humidite specifique (kg / kg)
47 REAL, intent(in):: ts(:) ! (knon) temperature du sol (K)
48 REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa)
49 REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
50 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
51
52 REAL, intent(inout):: radsol(:) ! (knon)
53 ! rayonnement net au sol (Solaire + IR) W / m2
54
55 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface
56 REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige
57 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
58
59 real, intent(in):: precip_rain(klon)
60 ! liquid water mass flux (kg / m2 / s), positive down
61
62 real, intent(in):: precip_snow(klon)
63 ! solid water mass flux (kg / m2 / s), positive down
64
65 real, intent(out):: fluxlat(:) ! (knon)
66 real, intent(in):: pctsrf_new_sic(:) ! (klon)
67 REAL, intent(inout):: agesno(:) ! (knon)
68 REAL d_t(klon, klev) ! incrementation de "t"
69 REAL d_q(klon, klev) ! incrementation de "q"
70 REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature
71 real z0_new(klon)
72
73 REAL, intent(out):: flux_t(:) ! (knon)
74 ! (diagnostic) flux de chaleur sensible (Cp T) à la surface,
75 ! positif vers le bas, W / m2
76
77 REAL, intent(out):: flux_q(:) ! (knon)
78 ! flux de la vapeur d'eau à la surface, en kg / (m**2 s)
79
80 REAL dflux_s(:) ! (knon) derivee du flux sensible dF / dTs
81 REAL dflux_l(:) ! (knon) derivee du flux latent dF / dTs
82
83 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
84 ! hauteur de neige, en kg / m2 / s
85 REAL fqcalving(klon)
86
87 ! Flux thermique utiliser pour fondre la neige
88 REAL ffonte(klon)
89
90 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
91
92 ! Local:
93
94 INTEGER knon
95 REAL evap(size(knindex)) ! (knon) evaporation au sol
96
97 INTEGER i, k
98 REAL zx_cq(klon, klev)
99 REAL zx_dq(klon, klev)
100 REAL zx_ch(klon, klev)
101 REAL zx_dh(klon, klev)
102 REAL zx_buf1(klon)
103 REAL zx_buf2(klon)
104 REAL zx_coef(klon, klev)
105 REAL local_h(klon, klev) ! enthalpie potentielle
106 REAL local_q(klon, klev)
107 REAL psref(klon) ! pression de reference pour temperature potent.
108 REAL zx_pkh(klon, klev), zx_pkf(klon, klev)
109
110 ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre
111 REAL gamq(klon, 2:klev)
112 ! contre-gradient pour la chaleur sensible: Kelvin / metre
113 REAL gamt(klon, 2:klev)
114 REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev)
115 REAL zdelz
116
117 real temp_air(klon), spechum(klon)
118 real petAcoef(klon), peqAcoef(klon)
119 real petBcoef(klon), peqBcoef(klon)
120 real p1lay(klon)
121
122 real tsurf_new(size(knindex)) ! (knon)
123 real zzpk
124
125 !----------------------------------------------------------------
126
127 knon = size(knindex)
128
129 if (iflag_pbl == 1) then
130 do k = 3, klev
131 do i = 1, knon
132 gamq(i, k)= 0.0
133 gamt(i, k)= - 1.0e-03
134 enddo
135 enddo
136 do i = 1, knon
137 gamq(i, 2) = 0.0
138 gamt(i, 2) = - 2.5e-03
139 enddo
140 else
141 do k = 2, klev
142 do i = 1, knon
143 gamq(i, k) = 0.0
144 gamt(i, k) = 0.0
145 enddo
146 enddo
147 endif
148
149 DO i = 1, knon
150 psref(i) = paprs(i, 1) !pression de reference est celle au sol
151 ENDDO
152 DO k = 1, klev
153 DO i = 1, knon
154 zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA
155 zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA
156 local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k)
157 local_q(i, k) = q(i, k)
158 ENDDO
159 ENDDO
160
161 ! Convertir les coefficients en variables convenables au calcul:
162
163 DO k = 2, klev
164 DO i = 1, knon
165 zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) &
166 * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2
167 zx_coef(i, k) = zx_coef(i, k) * dtime * RG
168 ENDDO
169 ENDDO
170
171 ! Preparer les flux lies aux contre-gardients
172
173 DO k = 2, klev
174 DO i = 1, knon
175 zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) &
176 * (pplay(i, k - 1) - pplay(i, k))
177 z_gamaq(i, k) = gamq(i, k) * zdelz
178 z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k)
179 ENDDO
180 ENDDO
181 DO i = 1, knon
182 zx_buf1(i) = zx_coef(i, klev) + delp(i, klev)
183 zx_cq(i, klev) = (local_q(i, klev) * delp(i, klev) &
184 - zx_coef(i, klev) * z_gamaq(i, klev)) / zx_buf1(i)
185 zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i)
186
187 zzpk=(pplay(i, klev) / psref(i))**RKAPPA
188 zx_buf2(i) = zzpk * delp(i, klev) + zx_coef(i, klev)
189 zx_ch(i, klev) = (local_h(i, klev) * zzpk * delp(i, klev) &
190 - zx_coef(i, klev) * z_gamah(i, klev)) / zx_buf2(i)
191 zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i)
192 ENDDO
193 DO k = klev - 1, 2, - 1
194 DO i = 1, knon
195 zx_buf1(i) = delp(i, k) + zx_coef(i, k) &
196 + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1))
197 zx_cq(i, k) = (local_q(i, k) * delp(i, k) &
198 + zx_coef(i, k + 1) * zx_cq(i, k + 1) &
199 + zx_coef(i, k + 1) * z_gamaq(i, k + 1) &
200 - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i)
201 zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i)
202
203 zzpk=(pplay(i, k) / psref(i))**RKAPPA
204 zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) &
205 + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1))
206 zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) &
207 + zx_coef(i, k + 1) * zx_ch(i, k + 1) &
208 + zx_coef(i, k + 1) * z_gamah(i, k + 1) &
209 - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i)
210 zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i)
211 ENDDO
212 ENDDO
213
214 DO i = 1, knon
215 zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2))
216 zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) &
217 + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i)
218 zx_dq(i, 1) = - 1. * RG / zx_buf1(i)
219
220 zzpk=(pplay(i, 1) / psref(i))**RKAPPA
221 zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2))
222 zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) &
223 + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i)
224 zx_dh(i, 1) = - 1. * RG / zx_buf2(i)
225 ENDDO
226
227 ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface
228 ! avec la surface
229
230 ! Initialisation
231 petAcoef =0.
232 peqAcoef = 0.
233 petBcoef =0.
234 peqBcoef = 0.
235 p1lay =0.
236
237 petAcoef(1:knon) = zx_ch(1:knon, 1)
238 peqAcoef(1:knon) = zx_cq(1:knon, 1)
239 petBcoef(1:knon) = zx_dh(1:knon, 1)
240 peqBcoef(1:knon) = zx_dq(1:knon, 1)
241 temp_air(1:knon) =t(1:knon, 1)
242 spechum(1:knon)=q(1:knon, 1)
243 p1lay(1:knon) = pplay(1:knon, 1)
244
245 CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, &
246 qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag(:knon), petAcoef, &
247 peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, rugos, &
248 rugoro, snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, fluxlat, &
249 dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, &
250 fqcalving, ffonte, run_off_lic_0)
251
252 flux_q = - evap
253 d_ts = tsurf_new - ts
254
255 DO i = 1, knon
256 local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime
257 local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime
258 ENDDO
259 DO k = 2, klev
260 DO i = 1, knon
261 local_q(i, k) = zx_cq(i, k) + zx_dq(i, k) * local_q(i, k - 1)
262 local_h(i, k) = zx_ch(i, k) + zx_dh(i, k) * local_h(i, k - 1)
263 ENDDO
264 ENDDO
265
266 ! Calcul des tendances
267 DO k = 1, klev
268 DO i = 1, knon
269 d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k)
270 d_q(i, k) = local_q(i, k) - q(i, k)
271 ENDDO
272 ENDDO
273
274 END SUBROUTINE clqh
275
276 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21