/[lmdze]/trunk/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 54 - (show annotations)
Tue Dec 6 15:07:04 2011 UTC (12 years, 4 months ago) by guez
Original Path: trunk/libf/phylmd/clqh.f90
File size: 12615 byte(s)
Removed Numerical Recipes procedure "ran1". Replaced calls to "ran1"
in "inidissip" by calls to intrinsic procedures.

Split file "interface_surf.f90" into a file with a module containing
only variables, "interface_surf", and single-procedure files. Gathered
files into directory "Interface_surf".

Added argument "cdivu" to "gradiv" and "gradiv2", "cdivh" to
"divgrad2" and "divgrad", and "crot" to "nxgraro2" and
"nxgrarot". "dissip" now uses variables "cdivu", "cdivh" and "crot"
from module "inidissip_m", so it can pass them to "gradiv2",
etc. Thanks to this modification, we avoid a circular dependency
betwwen "inidissip.f90" and "gradiv2.f90", etc. The value -1. used by
"gradiv2", for instance, during computation of eigenvalues is not the
value "cdivu" computed by "inidissip".

Extracted procedure "start_inter_3d" from module "startdyn", to its
own module.

In "inidissip", unrolled loop on "ii". I find it clearer now.

Moved variables "matriceun", "matriceus", "matricevn", "matricevs",
"matrinvn" and "matrinvs" from module "parafilt" to module
"inifilr_m". Moved variables "jfiltnu", "jfiltnv", "jfiltsu",
"jfiltsv" from module "coefils" to module "inifilr_m".

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, itime, date0, jour, debut, lafin, rlon, rlat, cufi, &
8 cvfi, knon, nisurf, knindex, pctsrf, soil_model, tsoil, qsol, &
9 ok_veget, ocean, npas, nexca, rmu0, co2_ppm, rugos, rugoro, u1lay, &
10 v1lay, coef, t, q, ts, paprs, pplay, delp, radsol, albedo, alblw, &
11 snow, qsurf, precip_rain, precip_snow, fder, taux, tauy, ywindsp, &
12 sollw, sollwdown, swnet, fluxlat, pctsrf_new, agesno, d_t, d_q, d_ts, &
13 z0_new, flux_t, flux_q, dflux_s, dflux_l, fqcalving, ffonte, &
14 run_off_lic_0, flux_o, flux_g, tslab, seaice)
15
16 ! Author: Z.X. Li (LMD/CNRS)!
17 ! Date: 1993/08/18
18 ! Objet : diffusion verticale de "q" et de "h"
19
20 USE conf_phys_m, ONLY : iflag_pbl
21 USE dimens_m, ONLY : iim, jjm
22 USE dimphy, ONLY : klev, klon, zmasq
23 USE dimsoil, ONLY : nsoilmx
24 USE indicesol, ONLY : is_ter, nbsrf
25 USE interfsurf_hq_m, ONLY : interfsurf_hq
26 USE suphec_m, ONLY : rcpd, rd, rg, rkappa
27
28 ! Arguments:
29 INTEGER knon
30 REAL, intent(in):: dtime ! intervalle du temps (s)
31 real date0
32 REAL u1lay(klon) ! vitesse u de la 1ere couche (m/s)
33 REAL v1lay(klon) ! vitesse v de la 1ere couche (m/s)
34 REAL coef(klon, klev) ! le coefficient d'echange (m**2/s)
35 ! multiplie par le cisaillement du
36 ! vent (dV/dz); la premiere valeur
37 ! indique la valeur de Cdrag (sans unite)
38 REAL t(klon, klev) ! temperature (K)
39 REAL q(klon, klev) ! humidite specifique (kg/kg)
40 REAL ts(klon) ! temperature du sol (K)
41 REAL evap(klon) ! evaporation au sol
42 REAL paprs(klon, klev+1) ! pression a inter-couche (Pa)
43 REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
44 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
45 REAL radsol(klon) ! ray. net au sol (Solaire+IR) W/m2
46 REAL albedo(klon) ! albedo de la surface
47 REAL alblw(klon)
48 REAL snow(klon) ! hauteur de neige
49 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
50 real precip_rain(klon), precip_snow(klon)
51 REAL agesno(klon)
52 REAL rugoro(klon)
53 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
54 integer jour ! jour de l'annee en cours
55 real rmu0(klon) ! cosinus de l'angle solaire zenithal
56 real rugos(klon) ! rugosite
57 integer knindex(klon)
58 real pctsrf(klon, nbsrf)
59 real, intent(in):: rlon(klon), rlat(klon)
60 real cufi(klon), cvfi(klon)
61 logical ok_veget
62 REAL co2_ppm ! taux CO2 atmosphere
63 character(len=*), intent(in):: ocean
64 integer npas, nexca
65 ! -- LOOP
66 REAL yu10mx(klon)
67 REAL yu10my(klon)
68 REAL ywindsp(klon)
69 ! -- LOOP
70
71 REAL d_t(klon, klev) ! incrementation de "t"
72 REAL d_q(klon, klev) ! incrementation de "q"
73 REAL d_ts(klon) ! incrementation de "ts"
74 REAL flux_t(klon, klev) ! (diagnostic) flux de la chaleur
75 ! sensible, flux de Cp*T, positif vers
76 ! le bas: j/(m**2 s) c.a.d.: W/m2
77 REAL flux_q(klon, klev) ! flux de la vapeur d'eau:kg/(m**2 s)
78 REAL dflux_s(klon) ! derivee du flux sensible dF/dTs
79 REAL dflux_l(klon) ! derivee du flux latent dF/dTs
80 !IM cf JLD
81 ! Flux thermique utiliser pour fondre la neige
82 REAL ffonte(klon)
83 ! Flux d'eau "perdue" par la surface et nécessaire pour que limiter la
84 ! hauteur de neige, en kg/m2/s
85 REAL fqcalving(klon)
86 !IM "slab" ocean
87 REAL tslab(klon) !temperature du slab ocean (K) (OCEAN='slab ')
88 REAL seaice(klon) ! glace de mer en kg/m2
89 REAL flux_o(klon) ! flux entre l'ocean et l'atmosphere W/m2
90 REAL flux_g(klon) ! flux entre l'ocean et la glace de mer W/m2
91
92 REAL t_grnd ! temperature de rappel pour glace de mer
93 PARAMETER (t_grnd=271.35)
94 REAL t_coup
95 PARAMETER(t_coup=273.15)
96
97 INTEGER i, k
98 REAL zx_cq(klon, klev)
99 REAL zx_dq(klon, klev)
100 REAL zx_ch(klon, klev)
101 REAL zx_dh(klon, klev)
102 REAL zx_buf1(klon)
103 REAL zx_buf2(klon)
104 REAL zx_coef(klon, klev)
105 REAL local_h(klon, klev) ! enthalpie potentielle
106 REAL local_q(klon, klev)
107 REAL local_ts(klon)
108 REAL psref(klon) ! pression de reference pour temperature potent.
109 REAL zx_pkh(klon, klev), zx_pkf(klon, klev)
110
111 ! contre-gradient pour la vapeur d'eau: (kg/kg)/metre
112 REAL gamq(klon, 2:klev)
113 ! contre-gradient pour la chaleur sensible: Kelvin/metre
114 REAL gamt(klon, 2:klev)
115 REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev)
116 REAL zdelz
117
118 ! Rajout pour l'interface
119 integer, intent(in):: itime
120 integer nisurf
121 logical, intent(in):: debut
122 logical, intent(in):: lafin
123 real zlev1(klon)
124 real fder(klon), taux(klon), tauy(klon)
125 real temp_air(klon), spechum(klon)
126 real epot_air(klon), ccanopy(klon)
127 real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon)
128 real petBcoef(klon), peqBcoef(klon)
129 real sollw(klon), sollwdown(klon), swnet(klon), swdown(klon)
130 real p1lay(klon)
131 !$$$C PB ajout pour soil
132 LOGICAL, intent(in):: soil_model
133 REAL tsoil(klon, nsoilmx)
134 REAL qsol(klon)
135
136 ! Parametres de sortie
137 real fluxsens(klon), fluxlat(klon)
138 real tsol_rad(klon), tsurf_new(klon), alb_new(klon)
139 real emis_new(klon), z0_new(klon)
140 real pctsrf_new(klon, nbsrf)
141 ! JLD
142 real zzpk
143
144 character (len = 20) :: modname = 'Debut clqh'
145 LOGICAL check
146 PARAMETER (check=.false.)
147
148 !----------------------------------------------------------------
149
150 if (check) THEN
151 write(*, *) modname, ' nisurf=', nisurf
152 !C call flush(6)
153 endif
154
155 if (check) THEN
156 WRITE(*, *)' qsurf (min, max)' &
157 , minval(qsurf(1:knon)), maxval(qsurf(1:knon))
158 !C call flush(6)
159 ENDIF
160
161 if (iflag_pbl.eq.1) then
162 do k = 3, klev
163 do i = 1, knon
164 gamq(i, k)= 0.0
165 gamt(i, k)= -1.0e-03
166 enddo
167 enddo
168 do i = 1, knon
169 gamq(i, 2) = 0.0
170 gamt(i, 2) = -2.5e-03
171 enddo
172 else
173 do k = 2, klev
174 do i = 1, knon
175 gamq(i, k) = 0.0
176 gamt(i, k) = 0.0
177 enddo
178 enddo
179 endif
180
181 DO i = 1, knon
182 psref(i) = paprs(i, 1) !pression de reference est celle au sol
183 local_ts(i) = ts(i)
184 ENDDO
185 DO k = 1, klev
186 DO i = 1, knon
187 zx_pkh(i, k) = (psref(i)/paprs(i, k))**RKAPPA
188 zx_pkf(i, k) = (psref(i)/pplay(i, k))**RKAPPA
189 local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k)
190 local_q(i, k) = q(i, k)
191 ENDDO
192 ENDDO
193
194 ! Convertir les coefficients en variables convenables au calcul:
195
196 DO k = 2, klev
197 DO i = 1, knon
198 zx_coef(i, k) = coef(i, k)*RG/(pplay(i, k-1)-pplay(i, k)) &
199 *(paprs(i, k)*2/(t(i, k)+t(i, k-1))/RD)**2
200 zx_coef(i, k) = zx_coef(i, k) * dtime*RG
201 ENDDO
202 ENDDO
203
204 ! Preparer les flux lies aux contre-gardients
205
206 DO k = 2, klev
207 DO i = 1, knon
208 zdelz = RD * (t(i, k-1)+t(i, k))/2.0 / RG /paprs(i, k) &
209 *(pplay(i, k-1)-pplay(i, k))
210 z_gamaq(i, k) = gamq(i, k) * zdelz
211 z_gamah(i, k) = gamt(i, k) * zdelz *RCPD * zx_pkh(i, k)
212 ENDDO
213 ENDDO
214 DO i = 1, knon
215 zx_buf1(i) = zx_coef(i, klev) + delp(i, klev)
216 zx_cq(i, klev) = (local_q(i, klev)*delp(i, klev) &
217 -zx_coef(i, klev)*z_gamaq(i, klev))/zx_buf1(i)
218 zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i)
219
220 zzpk=(pplay(i, klev)/psref(i))**RKAPPA
221 zx_buf2(i) = zzpk*delp(i, klev) + zx_coef(i, klev)
222 zx_ch(i, klev) = (local_h(i, klev)*zzpk*delp(i, klev) &
223 -zx_coef(i, klev)*z_gamah(i, klev))/zx_buf2(i)
224 zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i)
225 ENDDO
226 DO k = klev-1, 2 , -1
227 DO i = 1, knon
228 zx_buf1(i) = delp(i, k)+zx_coef(i, k) &
229 +zx_coef(i, k+1)*(1.-zx_dq(i, k+1))
230 zx_cq(i, k) = (local_q(i, k)*delp(i, k) &
231 +zx_coef(i, k+1)*zx_cq(i, k+1) &
232 +zx_coef(i, k+1)*z_gamaq(i, k+1) &
233 -zx_coef(i, k)*z_gamaq(i, k))/zx_buf1(i)
234 zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i)
235
236 zzpk=(pplay(i, k)/psref(i))**RKAPPA
237 zx_buf2(i) = zzpk*delp(i, k)+zx_coef(i, k) &
238 +zx_coef(i, k+1)*(1.-zx_dh(i, k+1))
239 zx_ch(i, k) = (local_h(i, k)*zzpk*delp(i, k) &
240 +zx_coef(i, k+1)*zx_ch(i, k+1) &
241 +zx_coef(i, k+1)*z_gamah(i, k+1) &
242 -zx_coef(i, k)*z_gamah(i, k))/zx_buf2(i)
243 zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i)
244 ENDDO
245 ENDDO
246
247 DO i = 1, knon
248 zx_buf1(i) = delp(i, 1) + zx_coef(i, 2)*(1.-zx_dq(i, 2))
249 zx_cq(i, 1) = (local_q(i, 1)*delp(i, 1) &
250 +zx_coef(i, 2)*(z_gamaq(i, 2)+zx_cq(i, 2))) &
251 /zx_buf1(i)
252 zx_dq(i, 1) = -1. * RG / zx_buf1(i)
253
254 zzpk=(pplay(i, 1)/psref(i))**RKAPPA
255 zx_buf2(i) = zzpk*delp(i, 1) + zx_coef(i, 2)*(1.-zx_dh(i, 2))
256 zx_ch(i, 1) = (local_h(i, 1)*zzpk*delp(i, 1) &
257 +zx_coef(i, 2)*(z_gamah(i, 2)+zx_ch(i, 2))) &
258 /zx_buf2(i)
259 zx_dh(i, 1) = -1. * RG / zx_buf2(i)
260 ENDDO
261
262 ! Appel a interfsurf (appel generique) routine d'interface avec la surface
263
264 ! initialisation
265 petAcoef =0.
266 peqAcoef = 0.
267 petBcoef =0.
268 peqBcoef = 0.
269 p1lay =0.
270
271 ! do i = 1, knon
272 petAcoef(1:knon) = zx_ch(1:knon, 1)
273 peqAcoef(1:knon) = zx_cq(1:knon, 1)
274 petBcoef(1:knon) = zx_dh(1:knon, 1)
275 peqBcoef(1:knon) = zx_dq(1:knon, 1)
276 tq_cdrag(1:knon) =coef(1:knon, 1)
277 temp_air(1:knon) =t(1:knon, 1)
278 epot_air(1:knon) =local_h(1:knon, 1)
279 spechum(1:knon)=q(1:knon, 1)
280 p1lay(1:knon) = pplay(1:knon, 1)
281 zlev1(1:knon) = delp(1:knon, 1)
282 ! swnet = swdown * (1. - albedo)
283
284 !IM swdown=flux SW incident sur terres
285 !IM swdown=flux SW net sur les autres surfaces
286 !IM swdown(1:knon) = swnet(1:knon)
287 if(nisurf.eq.is_ter) THEN
288 swdown(1:knon) = swnet(1:knon)/(1-albedo(1:knon))
289 else
290 swdown(1:knon) = swnet(1:knon)
291 endif
292 ! enddo
293 ccanopy = co2_ppm
294
295 CALL interfsurf_hq(itime, dtime, date0, jour, rmu0, &
296 klon, iim, jjm, nisurf, knon, knindex, pctsrf, &
297 rlon, rlat, cufi, cvfi, &
298 debut, lafin, ok_veget, soil_model, nsoilmx, tsoil, qsol, &
299 zlev1, u1lay, v1lay, temp_air, spechum, epot_air, ccanopy, &
300 tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, &
301 precip_rain, precip_snow, sollw, sollwdown, swnet, swdown, &
302 fder, taux, tauy, &
303 ywindsp, rugos, rugoro, &
304 albedo, snow, qsurf, &
305 ts, p1lay, psref, radsol, &
306 ocean, npas, nexca, zmasq, &
307 evap, fluxsens, fluxlat, dflux_l, dflux_s, &
308 tsol_rad, tsurf_new, alb_new, alblw, emis_new, z0_new, &
309 pctsrf_new, agesno, fqcalving, ffonte, run_off_lic_0, &
310 flux_o, flux_g, tslab, seaice)
311
312 do i = 1, knon
313 flux_t(i, 1) = fluxsens(i)
314 flux_q(i, 1) = - evap(i)
315 d_ts(i) = tsurf_new(i) - ts(i)
316 albedo(i) = alb_new(i)
317 enddo
318
319 !==== une fois on a zx_h_ts, on peut faire l'iteration ========
320 DO i = 1, knon
321 local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1)*flux_t(i, 1)*dtime
322 local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1)*flux_q(i, 1)*dtime
323 ENDDO
324 DO k = 2, klev
325 DO i = 1, knon
326 local_q(i, k) = zx_cq(i, k) + zx_dq(i, k)*local_q(i, k-1)
327 local_h(i, k) = zx_ch(i, k) + zx_dh(i, k)*local_h(i, k-1)
328 ENDDO
329 ENDDO
330 !======================================================================
331 !== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas
332 !== flux_t est le flux de cpt (energie sensible): j/(m**2 s)
333 DO k = 2, klev
334 DO i = 1, knon
335 flux_q(i, k) = (zx_coef(i, k)/RG/dtime) &
336 * (local_q(i, k)-local_q(i, k-1)+z_gamaq(i, k))
337 flux_t(i, k) = (zx_coef(i, k)/RG/dtime) &
338 * (local_h(i, k)-local_h(i, k-1)+z_gamah(i, k)) &
339 / zx_pkh(i, k)
340 ENDDO
341 ENDDO
342 !======================================================================
343 ! Calcul tendances
344 DO k = 1, klev
345 DO i = 1, knon
346 d_t(i, k) = local_h(i, k)/zx_pkf(i, k)/RCPD - t(i, k)
347 d_q(i, k) = local_q(i, k) - q(i, k)
348 ENDDO
349 ENDDO
350
351 END SUBROUTINE clqh
352
353 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21