/[lmdze]/trunk/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 284 - (show annotations)
Fri Jul 20 17:35:43 2018 UTC (5 years, 9 months ago) by guez
File size: 7673 byte(s)
In procedure clqh, do not recompute pkf in zzpk.

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, &
8 rugos, rugoro, u1lay, v1lay, coef, tq_cdrag, t, q, ts, paprs, pplay, &
9 delp, radsol, albedo, snow, qsurf, precip_rain, precip_snow, fluxlat, &
10 pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, &
11 dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0)
12
13 ! Author: Z. X. Li (LMD/CNRS)
14 ! Date: 1993 Aug. 18th
15 ! Objet : diffusion verticale de "q" et de "h"
16
17 USE conf_phys_m, ONLY: iflag_pbl
18 USE dimphy, ONLY: klev, klon
19 USE interfsurf_hq_m, ONLY: interfsurf_hq
20 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
21
22 REAL, intent(in):: dtime ! intervalle du temps (s)
23 integer, intent(in):: julien ! jour de l'annee en cours
24 logical, intent(in):: debut
25 integer, intent(in):: nisurf
26 integer, intent(in):: knindex(:) ! (knon)
27 REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx)
28
29 REAL, intent(inout):: qsol(:) ! (knon)
30 ! column-density of water in soil, in kg m-2
31
32 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
33 real, intent(in):: rugos(:) ! (knon) rugosite
34 REAL, intent(in):: rugoro(:) ! (knon)
35
36 REAL, intent(in):: u1lay(:), v1lay(:) ! (knon)
37 ! vitesse de la 1ere couche (m / s)
38
39 REAL, intent(in):: coef(:, 2:) ! (knon, 2:klev)
40 ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement
41 ! du vent (dV / dz)
42
43 REAL, intent(in):: tq_cdrag(:) ! (knon) sans unite
44
45 REAL, intent(in):: t(:, :) ! (knon, klev) temperature (K)
46 REAL, intent(in):: q(:, :) ! (knon, klev) humidite specifique (kg / kg)
47 REAL, intent(in):: ts(:) ! (knon) temperature du sol (K)
48
49 REAL, intent(in):: paprs(:, :) ! (knon, klev + 1)
50 ! pression a inter-couche (Pa)
51
52 REAL, intent(in):: pplay(:, :) ! (knon, klev)
53 ! pression au milieu de couche (Pa)
54
55 REAL, intent(in):: delp(:, :) ! (knon, klev)
56 ! epaisseur de couche en pression (Pa)
57
58 REAL, intent(in):: radsol(:) ! (knon)
59 ! rayonnement net au sol (Solaire + IR) W / m2
60
61 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface
62 REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige
63
64 REAL, intent(out):: qsurf(:) ! (knon)
65 ! humidite de l'air au dessus de la surface
66
67 real, intent(in):: precip_rain(klon)
68 ! liquid water mass flux (kg / m2 / s), positive down
69
70 real, intent(in):: precip_snow(klon)
71 ! solid water mass flux (kg / m2 / s), positive down
72
73 real, intent(out):: fluxlat(:) ! (knon)
74 real, intent(in):: pctsrf_new_sic(:) ! (klon)
75 REAL, intent(inout):: agesno(:) ! (knon)
76 REAL, intent(out):: d_t(:, :) ! (knon, klev) incrementation de "t"
77 REAL, intent(out):: d_q(:, :) ! (knon, klev) incrementation de "q"
78 REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature
79 real, intent(out):: z0_new(:) ! (knon)
80
81 REAL, intent(out):: flux_t(:) ! (knon)
82 ! (diagnostic) flux de chaleur sensible (Cp T) à la surface,
83 ! positif vers le bas, W / m2
84
85 REAL, intent(out):: flux_q(:) ! (knon)
86 ! flux de la vapeur d'eau à la surface, en kg / (m**2 s)
87
88 REAL, intent(out):: dflux_s(:) ! (knon) derivee du flux sensible dF / dTs
89 REAL, intent(out):: dflux_l(:) ! (knon) derivee du flux latent dF / dTs
90
91 REAL, intent(out):: fqcalving(:) ! (knon)
92 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
93 ! hauteur de neige, en kg / m2 / s
94
95 REAL ffonte(klon)
96 ! Flux thermique utiliser pour fondre la neige
97
98 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
99
100 ! Local:
101 INTEGER knon
102 REAL evap(size(knindex)) ! (knon) evaporation au sol
103 INTEGER i, k
104 REAL, dimension(size(knindex), klev):: cq, dq, ch, dh ! (knon, klev)
105 REAL buf1(size(knindex)), buf2(size(knindex))
106 REAL zx_coef(size(knindex), 2:klev) ! (knon, 2:klev)
107 REAL h(size(knindex), klev) ! (knon, klev) enthalpie potentielle
108 REAL local_q(size(knindex), klev) ! (knon, klev)
109
110 REAL psref(size(knindex)) ! (knon)
111 ! pression de reference pour temperature potentielle
112
113 REAL pkf(size(knindex), klev) ! (knon, klev)
114
115 REAL gamt(size(knindex), 2:klev) ! (knon, 2:klev)
116 ! contre-gradient pour la chaleur sensible, en K m-1
117
118 REAL gamah(size(knindex), 2:klev) ! (knon, 2:klev)
119 real tsurf_new(size(knindex)) ! (knon)
120
121 !----------------------------------------------------------------
122
123 knon = size(knindex)
124
125 if (iflag_pbl == 1) then
126 gamt(:, 2) = - 2.5e-3
127 gamt(:, 3:)= - 1e-3
128 else
129 gamt = 0.
130 endif
131
132 psref = paprs(:, 1) ! pression de reference est celle au sol
133 forall (k = 1:klev) pkf(:, k) = (psref / pplay(:, k))**RKAPPA
134 h = RCPD * t * pkf
135
136 ! Convertir les coefficients en variables convenables au calcul:
137 forall (k = 2:klev) zx_coef(:, k) = coef(:, k) * RG &
138 / (pplay(:, k - 1) - pplay(:, k)) &
139 * (paprs(:, k) * 2 / (t(:, k) + t(:, k - 1)) / RD)**2 * dtime * RG
140
141 ! Preparer les flux lies aux contre-gardients
142 forall (k = 2:klev) gamah(:, k) = gamt(:, k) * (RD * (t(:, k - 1) &
143 + t(:, k)) / 2. / RG / paprs(:, k) * (pplay(:, k - 1) - pplay(:, k))) &
144 * RCPD * (psref / paprs(:, k))**RKAPPA
145
146 DO i = 1, knon
147 buf1(i) = zx_coef(i, klev) + delp(i, klev)
148 cq(i, klev) = q(i, klev) * delp(i, klev) / buf1(i)
149 dq(i, klev) = zx_coef(i, klev) / buf1(i)
150
151 buf2(i) = delp(i, klev) / pkf(i, klev) + zx_coef(i, klev)
152 ch(i, klev) = (h(i, klev) / pkf(i, klev) * delp(i, klev) &
153 - zx_coef(i, klev) * gamah(i, klev)) / buf2(i)
154 dh(i, klev) = zx_coef(i, klev) / buf2(i)
155 ENDDO
156
157 DO k = klev - 1, 2, - 1
158 DO i = 1, knon
159 buf1(i) = delp(i, k) + zx_coef(i, k) &
160 + zx_coef(i, k + 1) * (1. - dq(i, k + 1))
161 cq(i, k) = (q(i, k) * delp(i, k) &
162 + zx_coef(i, k + 1) * cq(i, k + 1)) / buf1(i)
163 dq(i, k) = zx_coef(i, k) / buf1(i)
164
165 buf2(i) = delp(i, k) / pkf(i, k) + zx_coef(i, k) &
166 + zx_coef(i, k + 1) * (1. - dh(i, k + 1))
167 ch(i, k) = (h(i, k) / pkf(i, k) * delp(i, k) &
168 + zx_coef(i, k + 1) * ch(i, k + 1) &
169 + zx_coef(i, k + 1) * gamah(i, k + 1) &
170 - zx_coef(i, k) * gamah(i, k)) / buf2(i)
171 dh(i, k) = zx_coef(i, k) / buf2(i)
172 ENDDO
173 ENDDO
174
175 DO i = 1, knon
176 buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - dq(i, 2))
177 cq(i, 1) = (q(i, 1) * delp(i, 1) + zx_coef(i, 2) * cq(i, 2)) / buf1(i)
178 dq(i, 1) = - 1. * RG / buf1(i)
179
180 buf2(i) = delp(i, 1) / pkf(i, 1) + zx_coef(i, 2) * (1. - dh(i, 2))
181 ch(i, 1) = (h(i, 1) / pkf(i, 1) * delp(i, 1) &
182 + zx_coef(i, 2) * (gamah(i, 2) + ch(i, 2))) / buf2(i)
183 dh(i, 1) = - 1. * RG / buf2(i)
184 ENDDO
185
186 CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, &
187 qsol, u1lay, v1lay, t(:, 1), q(:, 1), tq_cdrag(:knon), ch(:, 1), &
188 cq(:, 1), dh(:, 1), dq(:, 1), precip_rain, precip_snow, rugos, &
189 rugoro, snow, qsurf, ts, pplay(:, 1), psref, radsol, evap, flux_t, &
190 fluxlat, dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, &
191 agesno, fqcalving, ffonte, run_off_lic_0)
192
193 flux_q = - evap
194 d_ts = tsurf_new - ts
195
196 h(:, 1) = ch(:, 1) + dh(:, 1) * flux_t * dtime
197 local_q(:, 1) = cq(:, 1) + dq(:, 1) * flux_q * dtime
198
199 DO k = 2, klev
200 h(:, k) = ch(:, k) + dh(:, k) * h(:, k - 1)
201 local_q(:, k) = cq(:, k) + dq(:, k) * local_q(:, k - 1)
202 ENDDO
203
204 d_t = h / pkf / RCPD - t
205 d_q = local_q - q
206
207 END SUBROUTINE clqh
208
209 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21